(1)Lucas定理:p为素数,则有:

(2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们知道,对任意质数p有(1+x)^p=1+(x^p)(mod p) 。我们只要证明这个式子:C(n,m)=C([n/p],[m/p]) * C(a0,b0)(mod p),那么就可以用归纳法证明整个定理。对于模p而言,我们有下面的式子成立:

上式左右两边的x的某项x^m(m<=n)的系数对模p同余。其中左边的x^m的系数是 C(n,m)。 而由于a0和b0都小于p,因此右边的x^m 一定是由 x^([m/p]*p) 和 x^b0 (即i=[m/p] , j=b0 ) 相乘而得 因此有:C(n,m)=C([n/p],[m/p]) * C(a0,b0)  (mod p)。

(3)拓展应用:上面的p是素数,那么不是素数怎么办呢?若不是素数,将p分解质因数,将C(n,m)分别按照(1)中的方法求对p的质因数的模,然后用中国剩余定理合并。比如计算C(10,3)%14。C(10,3)=120,14有两个质因数2和7,120%2=0,120%7=1,这样用(2,0)(7,1)找到最小的正整数8即是答案,即C(10,3)%14=8。注意,这里只适用于p分解完质因数后每个质因数只出现一次,例如12=2*2*3就不行,因为2出现了两次。若p分解完质因数后,含有某个质因数出现多次,比如C(10,3)%98,其中98=2*7*7,此时就要把7*7看做一个数,即:120%2=0,120%49=22,用(2,0)(49,22)和中国剩余定理得到答案22,即C(10,3)%98=22。此时,你又会有疑问,C(10,3)%49不也是模一个非素数吗?此时不同的是这个非素数不是一般的非素数,而是某个素数的某次方。下面(4)介绍如何计算C(n,m)%p^t(t>=2,p为素数)。

(4)计算C(n,m)%p^t。我们知道,C(n,m)=n!/m!/(n-m)!,若我们可以计算出n!%p^t,我们就能计算出m!%p^t以及(n-m)!%p^t。我们不妨设x=n!%p^t,y=m!%p^t,z=(n-m)!%p^t,那么答案就是x*reverse(y,p^t)*reverse(z,p^t)(reverse(a,b)计算a对b的乘法逆元)。那么下面问题就转化成如何计算n!%p^t。比如p=3,t=2,n=19,

n!=1*2*3*4*5*6*7*8* ……*19

=[1*2*4*5*7*8*… *16*17*19]*(3*6*9*12*15*18)

=[1*2*4*5*7*8*… *16*17*19]*3^6(1*2*3*4*5*6)

然后发现后面的是(n/p)!,于是递归即可。前半部分是以p^t为周期的[1*2*4*5*7*8]=[10*11*13*14*16*17](mod 9)。下面是孤立的19,可以知道孤立出来的长度不超过 p^t,于是暴力即可。那么最后剩下的3^6啊这些数怎么办呢?我们只要计算出n!,m!,(n-m)!里含有多少个p(不妨设a,b,c),那么a-b-c就是C(n,m)中p的个数,直接算一下就行。

至此整个计算C(n,m)%p(p为任意数)的问题完美解决。下面给出代码:

i64 POW(i64 a,i64 b,i64 mod)
{
i64 ans=1;
while(b)
{
if(b&1) ans=ans*a%mod;
a=a*a%mod;
b>>=1;
}
return ans;
} i64 POW(i64 a,i64 b)
{
i64 ans=1;
while(b)
{
if(b&1) ans=ans*a;
a=a*a;
b>>=1;
}
return ans;
} i64 exGcd(i64 a,i64 b,i64 &x,i64 &y)
{
i64 t,d;
if(!b)
{
x=1;
y=0;
return a;
}
d=exGcd(b,a%b,x,y);
t=x;
x=y;
y=t-a/b*y;
return d;
} bool modular(i64 a[],i64 m[],i64 k)
{
i64 d,t,c,x,y,i; for(i=2;i<=k;i++)
{
d=exGcd(m[1],m[i],x,y);
c=a[i]-a[1];
if(c%d) return false;
t=m[i]/d;
x=(c/d*x%t+t)%t;
a[1]=m[1]*x+a[1];
m[1]=m[1]*m[i]/d;
}
return true;
} i64 reverse(i64 a,i64 b)
{
i64 x,y;
exGcd(a,b,x,y);
return (x%b+b)%b;
} i64 C(i64 n,i64 m,i64 mod)
{
if(m>n) return 0;
i64 ans=1,i,a,b;
for(i=1;i<=m;i++)
{
a=(n+1-i)%mod;
b=reverse(i%mod,mod);
ans=ans*a%mod*b%mod;
}
return ans;
} i64 C1(i64 n,i64 m,i64 mod)
{
if(m==0) return 1;
return C(n%mod,m%mod,mod)*C1(n/mod,m/mod,mod)%mod;
} i64 cal(i64 n,i64 p,i64 t)
{
if(!n) return 1;
i64 x=POW(p,t),i,y=n/x,temp=1;
for(i=1;i<=x;i++) if(i%p) temp=temp*i%x;
i64 ans=POW(temp,y,x);
for(i=y*x+1;i<=n;i++) if(i%p) ans=ans*i%x;
return ans*cal(n/p,p,t)%x;
} i64 C2(i64 n,i64 m,i64 p,i64 t)
{
i64 x=POW(p,t);
i64 a,b,c,ap=0,bp=0,cp=0,temp;
for(temp=n;temp;temp/=p) ap+=temp/p;
for(temp=m;temp;temp/=p) bp+=temp/p;
for(temp=n-m;temp;temp/=p) cp+=temp/p;
ap=ap-bp-cp;
i64 ans=POW(p,ap,x);
a=cal(n,p,t);
b=cal(m,p,t);
c=cal(n-m,p,t);
ans=ans*a%x*reverse(b,x)%x*reverse(c,x)%x;
return ans;
} //计算C(n,m)%mod
i64 Lucas(i64 n,i64 m,i64 mod)
{
i64 i,t,cnt=0;
i64 A[205],M[205];
for(i=2;i*i<=mod;i++) if(mod%i==0)
{
t=0;
while(mod%i==0)
{
t++;
mod/=i;
}
M[++cnt]=POW(i,t);
if(t==1) A[cnt]=C1(n,m,i);
else A[cnt]=C2(n,m,i,t);
}
if(mod>1)
{
M[++cnt]=mod;
A[cnt]=C1(n,m,mod);
}
modular(A,M,cnt);
return A[1];
}

  

Lucas定理学习小记的更多相关文章

  1. lucas 定理学习

    大致意思就是求组合数C(n , m) % p的值, p为一个偶数 可以将组合数的n 和 m都理解为 p 进制的表示 n  = ak*p^k + a(k-1)*p^(k-1) + ... + a1*p ...

  2. Lucas定理学习(进阶中)

    (1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 =  [n/p]*p+a0,m=[m/p]*p+b0其次,我们 ...

  3. Lucas定理学习笔记

    从这里开始 一个有趣的问题 扩展Lucas算法 一个有趣的问题 题目大意 给定$n, m, p$,求$C_{n}^{m}$除以$p$后的余数. Subtask#1  $0\leqslant m\leq ...

  4. lucas定理学习

    Lucas定理是用来求 c(n,m) mod p,p为素数的值. 表达式: C(n,m)%p=C(n/p,m/p)*C(n%p,m%p)%p 当我们遇到求一个N,M很大的组合数的时候,递推法就显得很耗 ...

  5. Lucas定理学习笔记(没有ex_lucas)

    题目链接\(Click\) \(Here\) \(ex\_lucas\)实在是不能学的东西...简单学了一下\(Lucas\)然后打算就这样鸽着了\(QwQ\)(奶一口不可能考) 没什么复杂的,证明的 ...

  6. [Lucas定理]【学习笔记】

    Lucas定理 [原文]2017-02-14 [update]2017-03-28 Lucas定理 计算组合数取模,适用于n很大p较小的时候,可以将计算简化到小于p $ \binom{n}{m} \m ...

  7. [学习笔记]扩展LUCAS定理

    可以先做这个题[SDOI2010]古代猪文 此算法和LUCAS定理没有半毛钱关系. [模板]扩展卢卡斯 不保证P是质数. $C_n^m=\frac{n!}{m!(n-m)!}$ 麻烦的是分母. 如果互 ...

  8. 【转】Lucas定理 & 逆元学习小结

    (From:离殇灬孤狼) 这个Lucas定理是解决组合数的时候用的,当然是比较大的组合数了.比如C(1000000,50000)% mod,这个mod肯定是要取的,要不算出来真的是天文数字了. 对于一 ...

  9. lucas定理 +证明 学习笔记

    lucas定理 p为素数 \[\dbinom n m\equiv\dbinom {n\%p} {m\%p} \dbinom {n/p}{m/p}(mod p)\] 左边一项直接求,右边可递归处理,不包 ...

随机推荐

  1. CSS3实战之新增的选择器

    用的比较少 看到知道怎么回事就ok http://www.w3.org/TR/css3-selectors/#selectors http://www.cnblogs.com/jscode/archi ...

  2. 非常实用的10个PHP高级应用技巧

    PHP 独特的语法混合了 C.Java.Perl 以及 PHP 自创新的语法.它可以比 CGI或者Perl更快速的执行动态网页.用PHP做出的动态页面与其他的编程语言相比,PHP是将程序嵌入到HTML ...

  3. iTween基础之Rotate(旋转角度)

    一.基础介绍:二.基础属性 原文地址 :http://blog.csdn.net/dingkun520wy/article/details/50696489 一.基础介绍 RotateTo:旋转游戏物 ...

  4. D3js

    http://d3js.org http://blog.csdn.net/lzhlzz/article/details/27497157

  5. php多条件查询

    $sql)"; if(!empty($uid)) { $sql .=" and uid= ".$uid; } if(!empty($time1) && e ...

  6. C# Winform 拖放操作

    http://www.cnblogs.com/imlions/p/3189773.html 在开发程序的时候,为了提高用户的使用体验,或满足相关用户的功能,总是离不开拖放功能.而本文是总结winfor ...

  7. linux 下 安装 rpm 格式 的 mysql

    在Linux操作系统下,安装MYSQL有两种方式: 一种tar安装方式, 另外一种是rpm安装方式. 这两种安装方式有什么区别呢?尽管我们在Linux下常用tar来压缩/解压缩文件,但MYSQL的ta ...

  8. MAC 13信道

    房东的路由器一直连不上,手机却能连上,前天设置了13信道,后来又忘了,最后找到个连接WIFI的方法,在网络偏好设置里选择向导,诊断中可以连上wifi.

  9. Codeforces Round #311 (Div. 2) D. Vitaly and Cycle 奇环

    题目链接: 点这里 题目 D. Vitaly and Cycle time limit per test1 second memory limit per test256 megabytes inpu ...

  10. 【POJ】【3537】Crosses and Crosses

    博弈论 相当于放了x的位置,左右4格都不能再放x了,谁无处可放就输. n<=2000 直接枚举后继状态,暴力求SG函数即可. 例: 0000000->x..0000 / .x..000 / ...