Almost equilateral triangles

It is easily proved that no equilateral triangle exists with integral length sides and integral area. However, the almost equilateral triangle 5-5-6 has an area of 12 square units.

We shall define an almost equilateral triangle to be a triangle for which two sides are equal and the third differs by no more than one unit.

Find the sum of the perimeters of all almost equilateral triangles with integral side lengths and area and whose perimeters do not exceed one billion (1,000,000,000).


几乎等边的三角形

可以证明,不存在边长为整数的等边三角形其面积也是整数。但是,存在几乎等边的三角形 5-5-6,其面积恰好为12。

我们定义几乎等边的三角形是有两条边一样长,且第三边与这两边最多相差1的三角形。

对于周长不超过10亿的三角形中,找出边长和面积都为整数的近似等边三角形的周长和。

解题

这个直接暴力是可以的

先说:几乎等边三角形有两种,边长可以是:a、a、a+1 和a、a、a-1都满足三角形任意两边之和大于第三边,两边之差小于第三边。

下面就是这么根据三边怎么计算面积,并判断面积是整数

我第一想到的是海伦公式

当边长是:a、a、a+1的时候

判断根号下面的平方数,再判断结果S能够被4整除

当边长是:a、a、a-1的时候

这个和上面也一样了。

这个一个变量时间比较长,表示很伤不起

JAVA

package Level3;

public class PE094{
public static void run(){
long MAX = 1000000000;
long L1 = 0;
long L2 = 0;
for(long a =2;;a++){
if(3*a+1>MAX || 3*a-1>MAX){
break;
}
if(a>=2){
if(areaIsInteger(a,a+1) == true)
L1 +=3*a + 1;
}
if(a>=3){
if(areaIsInteger(a,a-1) == true)
L2 +=3*a - 1;
}
} System.out.println("L1: "+L1);
System.out.println("L2: "+L2);
System.out.println(L1 + L2);
}
// L1: 109552588
// L2: 408855758
// 518408346
// running time=124s662ms
public static boolean areaIsInteger(long a ,long c){
// c = a + 1
if( c == a+1){
long s1 = (3*a + 1)*(a-1);
if((long)Math.sqrt(s1) * (long)Math.sqrt(s1) !=s1)
return false;
long s2 = (long) ((a+1)*Math.sqrt(s1));
if(s2%4 != 0)
return false;
else{
return true;
}
}
if( c== a-1){
long s1 = (3*a -1)*(a+1);
if((long)Math.sqrt(s1)*(long)Math.sqrt(s1) !=s1)
return false;
long s2 = (long)((a-1)*Math.sqrt(s1));
if(s2%4 != 0)
return false;
else{
return true;
}
}
return true;
}
public static void main(String[] args) {
long t0 = System.currentTimeMillis();
run();
long t1 = System.currentTimeMillis();
long t = t1 - t0;
System.out.println("running time="+t/1000+"s"+t%1000+"ms"); }
}

上面根据海伦公式判断面积是否是整数,比较复杂。

直接根据三角形底乘高除以2比较简单点。

公式:

判断面积是否是整数的程序如下

    public static boolean areaIsInteger2(long a,long c){
if(c*c%4!=0)
return false;
long s0 = a*a-c*c/4;
long sqrt = (long)(Math.sqrt(s0));
if(sqrt * sqrt != s0)
return false;
long s = c*sqrt;
if(s%2!=0)
return false;
return true;
}

这个比较简单了,运行时间还是比较快的

//    L1: 109552588
// L2: 408855758
// 518408346
// running time=48s879ms

Project Euler 94:Almost equilateral triangles 几乎等边的三角形的更多相关文章

  1. Python练习题 040:Project Euler 012:有超过500个因子的三角形数

    本题来自 Project Euler 第12题:https://projecteuler.net/problem=12 # Project Euler: Problem 12: Highly divi ...

  2. Project Euler 91:Right triangles with integer coordinates 格点直角三角形

    Right triangles with integer coordinates The points P (x1, y1) and Q (x2, y2) are plotted at integer ...

  3. hackerrank Project Euler #210: Obtuse Angled Triangles

    传送门 做出一个好几个星期屯下来的题目的感觉就是一个字: 爽! 上图的黄点部分就是我们需要求的点 两边的部分很好算 求圆的地方有一个优化,由于圆心是整数点,我们可以把圆分为下面几个部分,阴影部分最难算 ...

  4. Project Euler 39 Integer right triangles( 素勾股数 )

    题意:若三边长 { a , b , c } 均为整数的直角三角形周长为 p ,当 p = 120 时,恰好存在三个不同的解:{ 20 , 48 , 52 } , { 24 , 45 , 51 } , ...

  5. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  6. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  7. Python练习题 029:Project Euler 001:3和5的倍数

    开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...

  8. Project Euler 9

    题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个 ...

  9. Project Euler 44: Find the smallest pair of pentagonal numbers whose sum and difference is pentagonal.

    In Problem 42 we dealt with triangular problems, in Problem 44 of Project Euler we deal with pentago ...

随机推荐

  1. Jquery Slick幻灯片插件

    slick 是一个基于 jQuery 的幻灯片插件,具有以下特点: 支持响应式 浏览器支持 CSS3 时,则使用 CSS3 过度/动画 支持移动设备滑动 支持桌面浏览器鼠标拖动 支持循环 支持左右控制 ...

  2. NetworkInfo 手机中的网络类型

    04-27 21:56:54.442: E/NetworkInfo(26457): NetworkInfo: type: mobile[EDGE], state: DISCONNECTED/IDLE, ...

  3. jquery鼠标滑过提示title具体实现代码

    jquery鼠标滑过提示title的实现代码. 如下: <script type="text/javascript" src="http://ajax.google ...

  4. Python-Day5 常用模块学习

    一.模块介绍 通俗点说,就是把常用的一些功能单独放置到一个.py文件中,方便其他文件来调用,这样的一个文件可以称为一个模块. 模块分为三种: 自定义模块 内置标准模块(又称标准库) 开源模块 二.导入 ...

  5. postgreSQL数据库(索引、视图)

    索引的含义与特点 索引是一个单独的.存储在磁盘上的数据库结构,它们包含对数据所有记录的引用指针,postgresql列类型都可以被索引,对相关列索引是提高查询操作效率的最佳途径.例如,查询select ...

  6. 使用WinSetupFromUSB来U盘安装WINDOWS2003

    今天用UltraISO制作WINDOWS2003的U盘的安装启动,在安装系统的时候发现错误提示“INF file txtsetup.sif is corrupt or missing .status ...

  7. .NET序员的成长之路

  8. 十二、BOOL冒泡

    int main(){        int a[5] = {5,2,3,4,1};      //需要一个可以告诉我们没有交换的东西      //YES:交换      //NO:未交换     ...

  9. Quartz.net 的开源任务管理平台

    Quartz.net 的开源任务管理平台 前面总结了很多,关于Quartz.net 的文章,介绍了如何使用Quartz.net.不清楚的朋友,可以看我之前的系列文章,http://www.cnblog ...

  10. Notes of the scrum meeting(2013/10/20)

    软工项目组buaa_smile确定自由项目主题及实现功能的scrum meeting meeting time:7:30~9:00p.m.,October 20th,2013 meeting plac ...