UVA 796 - Critical Links (求桥)
Critical Links |
In a computer network a link L, which interconnects two servers, is considered critical if there are at least two servers A and B such that all network interconnection paths between A and B pass through L. Removing a critical link generates two disjoint sub-networks such that any two servers of a sub-network are interconnected. For example, the network shown in figure 1 has three critical links that are marked bold: 0 -1, 3 - 4 and 6 - 7.

Figure 1: Critical links
It is known that:
- 1.
- the connection links are bi-directional;
- 2.
- a server is not directly connected to itself;
- 3.
- two servers are interconnected if they are directly connected or if they are interconnected with the same server;
- 4.
- the network can have stand-alone sub-networks.
Write a program that finds all critical links of a given computer network.
Input
The program reads sets of data from a text file. Each data set specifies the structure of a network and has the format:
...
The first line contains a positive integer (possibly 0) which is the number of network servers. The next
lines, one for each server in the network, are randomly ordered and show the way servers are connected. The line corresponding to serverk,
, specifies the number of direct connections of serverk and the servers which are directly connected to serverk. Servers are represented by integers from 0 to
. Input data are correct. The first data set from sample input below corresponds to the network in figure 1, while the second data set specifies an empty network.
Output
The result of the program is on standard output. For each data set the program prints the number of critical links and the critical links, one link per line, starting from the beginning of the line, as shown in the sample output below. The links are listed in ascending order according to their first element. The output for the data set is followed by an empty line.
Sample Input
- 8
- 0 (1) 1
- 1 (3) 2 0 3
- 2 (2) 1 3
- 3 (3) 1 2 4
- 4 (1) 3
- 7 (1) 6
- 6 (1) 7
- 5 (0)
- 0
Sample Output
- 3 critical links
- 0 - 1
- 3 - 4
- 6 - 7
- 0 critical links
模板题
需要按照顺序输出桥
- #include <stdio.h>
- #include <iostream>
- #include <string.h>
- #include <algorithm>
- #include <map>
- #include <vector>
- using namespace std;
- /*
- * 求 无向图的割点和桥
- * 可以找出割点和桥,求删掉每个点后增加的连通块。
- * 需要注意重边的处理,可以先用矩阵存,再转邻接表,或者进行判重
- */
- const int MAXN = ;
- const int MAXM = ;
- struct Edge
- {
- int to,next;
- bool cut;//是否为桥的标记
- }edge[MAXM];
- int head[MAXN],tot;
- int Low[MAXN],DFN[MAXN],Stack[MAXN];
- int Index,top;
- bool Instack[MAXN];
- bool cut[MAXN];
- int add_block[MAXN];//删除一个点后增加的连通块
- int bridge;
- void addedge(int u,int v)
- {
- edge[tot].to = v;edge[tot].next = head[u];edge[tot].cut = false;
- head[u] = tot++;
- }
- void Tarjan(int u,int pre)
- {
- int v;
- Low[u] = DFN[u] = ++Index;
- Stack[top++] = u;
- Instack[u] = true;
- int son = ;
- for(int i = head[u];i != -;i = edge[i].next)
- {
- v = edge[i].to;
- if(v == pre)continue;
- if( !DFN[v] )
- {
- son++;
- Tarjan(v,u);
- if(Low[u] > Low[v])Low[u] = Low[v];
- //桥
- //一条无向边(u,v)是桥,当且仅当(u,v)为树枝边,且满足DFS(u)<Low(v)。
- if(Low[v] > DFN[u])
- {
- bridge++;
- edge[i].cut = true;
- edge[i^].cut = true;
- }
- //割点
- //一个顶点u是割点,当且仅当满足(1)或(2) (1) u为树根,且u有多于一个子树。
- //(2) u不为树根,且满足存在(u,v)为树枝边(或称父子边,
- //即u为v在搜索树中的父亲),使得DFS(u)<=Low(v)
- if(u != pre && Low[v] >= DFN[u])//不是树根
- {
- cut[u] = true;
- add_block[u]++;
- }
- }
- else if( Low[u] > DFN[v])
- Low[u] = DFN[v];
- }
- //树根,分支数大于1
- if(u == pre && son > )cut[u] = true;
- if(u == pre)add_block[u] = son - ;
- Instack[u] = false;
- top--;
- }
- void solve(int N)
- {
- memset(DFN,,sizeof(DFN));
- memset(Instack,false,sizeof(Instack));
- memset(add_block,,sizeof(add_block));
- memset(cut,false,sizeof(cut));
- Index = top = ;
- bridge = ;
- for(int i = ;i <= N;i++)
- if( !DFN[i] )
- Tarjan(i,i);
- printf("%d critical links\n",bridge);
- vector<pair<int,int> >ans;
- for(int u = ;u <= N;u++)
- for(int i = head[u];i != -;i = edge[i].next)
- if(edge[i].cut && edge[i].to > u)
- {
- ans.push_back(make_pair(u,edge[i].to));
- }
- sort(ans.begin(),ans.end());
- //按顺序输出桥
- for(int i = ;i < ans.size();i++)
- printf("%d - %d\n",ans[i].first-,ans[i].second-);
- printf("\n");
- }
- void init()
- {
- tot = ;
- memset(head,-,sizeof(head));
- }
- //处理重边
- map<int,int>mapit;
- inline bool isHash(int u,int v)
- {
- if(mapit[u*MAXN+v])return true;
- if(mapit[v*MAXN+u])return true;
- mapit[u*MAXN+v] = mapit[v*MAXN+u] = ;
- return false;
- }
- int main()
- {
- int n;
- while(scanf("%d",&n) == )
- {
- init();
- int u;
- int k;
- int v;
- //mapit.clear();
- for(int i = ;i <= n;i++)
- {
- scanf("%d (%d)",&u,&k);
- u++;
- //这样加边,要保证正边和反边是相邻的,建无向图
- while(k--)
- {
- scanf("%d",&v);
- v++;
- if(v <= u)continue;
- //if(isHash(u,v))continue;
- addedge(u,v);
- addedge(v,u);
- }
- }
- solve(n);
- }
- return ;
- }
UVA 796 - Critical Links (求桥)的更多相关文章
- Uva 796 Critical Links 找桥
这个题很简单,但是输入有毒,用字符串的我一直RE 然后换成这样瞬间AC #include <stdio.h> #include <string.h> #include < ...
- Uva 796 Critical Links (割边+排序)
题目链接: Uva 796 Critical Links 题目描述: 题目中给出一个有可能不连通的无向图,求出这个图的桥,并且把桥按照起点升序输出(还有啊,还有啊,每个桥的起点要比终点靠前啊),这个题 ...
- uva 796 Critical Links(无向图求桥)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 796 Critical Links(Tarjan求桥)
题目是PDF就没截图了 这题似乎没有重边,若有重边的话这两点任意一条边都不是桥,跟求割点类似的原理 代码: #include <stdio.h> #include <bits/std ...
- UVA 796 Critical Links(无向图求桥)
题目大意:给你一个网络要求这里面的桥. 输入数据: n 个点 点的编号 (与这个点相连的点的个数m) 依次是m个点的 输入到文件结束. 桥输出的时候需要排序 知识汇总: 桥: 无向连通 ...
- UVA 796 Critical Links(模板题)(无向图求桥)
<题目链接> 题目大意: 无向连通图求桥,并将桥按顺序输出. 解题分析: 无向图求桥的模板题,下面用了kuangbin的模板. #include <cstdio> #inclu ...
- UVA 796 Critical Links —— (求割边(桥))
和求割点类似,只要把>=改成>即可.这里想解释一下的是,无向图没有重边,怎么可以使得low[v]=dfn[u]呢?只要它们之间再来一个点即可. 总感觉图论要很仔细地想啊- -一不小心就弄混 ...
- UVA 796 - Critical Links 无向图字典序输出桥
题目:传送门 题意:给你一个无向图,你需要找出里面的桥,并把所有桥按字典序输出 这一道题就是用无向图求桥的模板就可以了. 我一直错就是因为我在输入路径的时候少考虑一点 错误代码+原因: 1 #incl ...
- UVA 796 Critical Links (tarjan算法求割边)
这是在kuangbin的题目里看到的,不得不吐槽一下,题目中居然没给出数据范围,还是我自己猜的-本来是一道挺裸的题,但是我wa了好多次,原因就是这里面有两个坑点,1重边特判,2输出时左边必须比右边小. ...
随机推荐
- Spring 事务中 readOnly 的解释
spring 中事务的PROPAGATION_REQUIRED,Readonly的解释 (2012-11-21 16:29:38) 转载▼ 标签: 杂谈 一. ...
- nodejs初写心得
nodejs安装后如何查看和安装其他工具 网上nodejs的文章已经很多,这里只是写下自己的小小心得,如果能帮到别人当然更好. 安装nodejs这里就不叙述了,直接上nodejs官网下载就好了,初学者 ...
- DirectSound播放PCM(可播放实时采集的音频数据)
前言 该篇整理的原始来源为http://blog.csdn.net/leixiaohua1020/article/details/40540147.非常感谢该博主的无私奉献,写了不少关于不同多媒体库的 ...
- Pod::Executable pull
使用cocoapods 的时候遇到了以下错误:[!] Pod::Executable pull Updating eaf98af..ba3c030 error: Your local changes ...
- org/apache/commons/discovery/tools/DiscoverSingleton
是编写的调用web service服务器的客户端程序编译时出错. Exception in thread "main" java.lang.NoClassDefFoundError ...
- OK335xS psplash Screen 移植
/*********************************************************************** * OK335xS psplash Screen 移植 ...
- Java [Leetcode 125]Valid Palindrome
题目描述: Given a string, determine if it is a palindrome, considering only alphanumeric characters and ...
- liunx环境下的mysql数据库配置文件my.conf内的参数含义
[client]port = 3306socket = /tmp/mysql.sock [mysqld]port = 3306socket = /tmp/mysql.sock basedir = /u ...
- 一个好用的hibernate泛型dao
以前从springside2.0上搞下来的很好用的,基本实现dao零编码只要配置xml文件就行了. 先看图: 一共4层,com.demonstration.hibernate.basedao是我加的用 ...
- .NET之美——C# 中的委托和事件
C# 中的委托和事件 文中代码在VS2005下通过,由于VS2003(.Net Framework 1.1)不支持隐式的委托变量,所以如果在一个接受委托类型的位置直接赋予方法名,在VS2003下会报错 ...