HDU 3844 Mining Your Own Business(割点,经典)
题意:
给出一个连通图,要求将某些点涂黑,使得无论哪个点(包括相关的边)撤掉后能够成功使得剩下的所有点能够到达任意一个涂黑的点,颜料不多,涂黑的点越少越好,并输出要涂几个点和有多少种涂法。
思路:
要使得任意撤掉一个点都能使其他点能够到达黑点,那么点双连通分量能保证这点,那么就在同个点双连通分量内涂黑1个点。但是每个【点双连通分量】都涂吗?太浪费颜料了,那就缩点成树,只需要涂叶子即可,那就找度为1的缩点。但是种数呢?叶子内的点除了割点外都是可以涂黑的,因为如果黑色割点被撤掉,那么叶子中的其他点怎么办?所以不能涂割点,每个黑点有【叶子中的点数-1】种涂法,所有黑店的涂法相乘为第2个结果。
特殊情况,因为给的是连通图且至少有2个点,那么还可能会出现没有割点的情况(仅1个点双连通分量),那就直接涂黑两个,以防一个黑点被撤掉。
此题出现的连续的点可能多达10万个,DFS就会爆栈。在C++下可以手动开栈,G++下的还不清楚怎么开。
#pragma comment(linker,"/STACK:102400000,102400000")//开栈
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <unordered_map>
#include <stack>
#define LL long long
#define pii pair<int,int>
using namespace std;
const int N=+;
const int INF=0x7f7f7f7f;
int up;
int low[N], dfn[N];
bool iscut[N];
int dfn_clock, bcc_cnt, bcc_no[N];
unordered_map<int,int> mapp;
stack< pii > stac;
vector<int> bcc[N], vect[N]; void DFS(int x, int far)//tarjan
{
dfn[x]=low[x]=++dfn_clock; int chd=;
for(int i=; i<vect[x].size(); i++)
{
int t=vect[x][i];
if(!dfn[t])
{
chd++;
stac.push(make_pair(x,t));
DFS(t,x);
low[x]=min( low[x], low[t]);
if(low[t]>=dfn[x])
{
iscut[x]=true; //需要标记割点
bcc[++bcc_cnt].clear();
while(true)
{
int a=stac.top().first;
int b=stac.top().second;
stac.pop();
if(bcc_no[a]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(a);
bcc_no[a]=bcc_cnt;
}
if(bcc_no[b]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(b);
bcc_no[b]=bcc_cnt;
}
if(a==x&&b==t) break;
}
}
}
else if( dfn[t]<dfn[x] && t!=far)
{
stac.push(make_pair(x,t));
low[x]=min(low[x],dfn[t]);
}
}
if(chd==&&far==) iscut[x]=false; //根
} void find_bcc(int Case)
{
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(iscut,,sizeof(iscut));
memset(bcc_no,,sizeof(bcc_no)); dfn_clock=bcc_cnt=;
for(int i=; i<=up; i++) if(!dfn[i]) DFS(i,); //深搜
LL ans1=,ans2=; for(int i=; i<=bcc_cnt; i++) //统计度为多少
{
int cnt=;
for(int j=; j<bcc[i].size(); j++) if(iscut[bcc[i][j] ]) cnt++; //有割点就统计连通分量i的度。
if(cnt==) ans1++, ans2*=bcc[i].size()-;
}
if(bcc_cnt==) ans1=,ans2=(LL)bcc[].size()*(bcc[].size()-)/;
printf("Case %d: %lld %lld\n", Case, ans1, ans2);
} int main()
{
freopen("input.txt", "r", stdin);
int a, b, n, j=;
while(scanf("%d",&n), n)
{
mapp.clear();
for(int i=; i<N; i++) vect[i].clear();
up=;
for(int i=; i<n; i++)
{
scanf("%d%d",&a,&b);
if(!mapp[a]) mapp[a]=++up;
if(!mapp[b]) mapp[b]=++up;//点号缩小为连续 vect[mapp[a]].push_back(mapp[b]);
vect[mapp[b]].push_back(mapp[a]);
}
find_bcc(++j);
}
return ;
}
AC代码
HDU 3844 Mining Your Own Business(割点,经典)的更多相关文章
- HDU 3844 Mining Your Own Business
首先,如果图本来就是一个点双联通的(即不存在割点),那么从这个图中选出任意两个点就OK了. 如果这个图存在割点,那么我们把割点拿掉后图就会变得支离破碎了.对于那种只和一个割点相连的块,这个块中至少要选 ...
- UVALive - 5135 - Mining Your Own Business(双连通分量+思维)
Problem UVALive - 5135 - Mining Your Own Business Time Limit: 5000 mSec Problem Description John D ...
- HDU3844 Mining Your Own Business
HDU3844 Mining Your Own Business 问题描述John Digger是一个大型illudium phosdex矿的所有者.该矿山由一系列隧道组成,这些隧道在各个大型交叉口相 ...
- 「题解报告」SP16185 Mining your own business
题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...
- HDU 2181 哈密顿绕行世界问题(经典DFS+回溯)
哈密顿绕行世界问题 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- HDU 3038 - How Many Answers Are Wrong - [经典带权并查集]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3038 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
- HDU 1789 Doing Homework again(非常经典的贪心)
Doing Homework again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 1180 诡异的楼梯(超级经典的bfs之一,需多回顾)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1180 诡异的楼梯 Time Limit: 2000/1000 MS (Java/Others) ...
- UVA5135 Mining Your Own Business ( 无向图双连通分量)
题目链接 题意:n条隧道由一些点连接而成,其中每条隧道链接两个连接点.任意两个连接点之间最多只有一条隧道.任务就是在这些连接点中,安装尽量少的太平井和逃生装置,使得不管哪个连接点倒塌,工人都能从其他太 ...
随机推荐
- Oracle数据库表的备份和数据表的删除操作
--Oracle数据库中的表备份: --备份语句:在备份之后就可以将这张表的所有数据源删除了,但是之后有人对这张表的数据进行操作,但是在操作完成之后要记得将数据表恢复 CREATE TABLE DZH ...
- 【UOJ】【34】多项式乘法
快速傅里叶变换模板题 算法理解请看<算法导论>第30章<多项式与快速傅里叶变换>,至于证明插值唯一性什么的看不懂也没关系啦-只要明白这个过程是怎么算的就ok. 递归版:(425 ...
- CSS reset--重置样式
在一般我们写一个自己自定义的HTML的时候,我们会清除样式或者说重置样式 重置样式.清除浏览器默认样式,一切全部用自己的设置,并配置适合设计的基础样式 下面给出所有一般需要清除的样式: html,bo ...
- 别让安全问题拖慢了 DevOps!
DEVSECOPS 所面临的挑战 敏捷开发和 DevOps 方法的出现使软件开发的速度与质量都有所提升,但它们不经意地也为安全机构增压不少.从前的安全策略是基于静态数据的,而在产品上线前才应用这些策略 ...
- 【面试题030】最小的k个数
[面试题030]最小的k个数 题目: 输入n个整数,找出其中最小的k个数. 例如输入4.5.1.6.2.7.3.8这8个字,则其中最小的4个数字是1.2.3.4. 思路一: ...
- Asp.net 上传图片添加半透明图片或者文字水印的方法
主要用到System.Drawing 命名空间下的相关类,如Brush.Image.Bitmap.Graphics等等类 Image类可以从图片文件创建Image的实例,Bitmap可以从文件也可以从 ...
- java基础知识回顾之java Thread类学习(五)--java多线程安全问题(锁)同步的前提
这里举个例子讲解,同步synchronized在什么地方加,以及同步的前提: * 1.必须要有两个以上的线程,才需要同步. * 2.必须是多个线程使用同一个锁. * 3.必须保证同步中只能有一个线程在 ...
- aChartEngine图表显示
android的数据报表显示 从图中,我们可以看出,绘制一个图表我们其实,我们只需要理解三个概念 1,ChartFactory ,传入XYMutilpleSeriesRenderer,XYMutilp ...
- POJ 3318 Matrix Multiplication(矩阵乘法)
题目链接 题意 : 给你三个n维矩阵,让你判断A*B是否等于C. 思路 :优化将二维转化成一维的.随机生成一个一维向量d,使得A*(B*d)=C*d,多次生成多次测试即可使错误概率大大减小. #inc ...
- lintcode:Matrix Zigzag Traversal 矩阵的之字型遍历
题目: 矩阵的之字型遍历 给你一个包含 m x n 个元素的矩阵 (m 行, n 列), 求该矩阵的之字型遍历. 样例 对于如下矩阵: [ [1, 2, 3, 4], [5, 6, 7, 8], [9 ...