题意:

  给出一个连通图,要求将某些点涂黑,使得无论哪个点(包括相关的边)撤掉后能够成功使得剩下的所有点能够到达任意一个涂黑的点,颜料不多,涂黑的点越少越好,并输出要涂几个点和有多少种涂法。

思路:

  要使得任意撤掉一个点都能使其他点能够到达黑点,那么点双连通分量能保证这点,那么就在同个点双连通分量内涂黑1个点。但是每个【点双连通分量】都涂吗?太浪费颜料了,那就缩点成树,只需要涂叶子即可,那就找度为1的缩点。但是种数呢?叶子内的点除了割点外都是可以涂黑的,因为如果黑色割点被撤掉,那么叶子中的其他点怎么办?所以不能涂割点,每个黑点有【叶子中的点数-1】种涂法,所有黑店的涂法相乘为第2个结果。

  特殊情况,因为给的是连通图且至少有2个点,那么还可能会出现没有割点的情况(仅1个点双连通分量),那就直接涂黑两个,以防一个黑点被撤掉。

  此题出现的连续的点可能多达10万个,DFS就会爆栈。在C++下可以手动开栈,G++下的还不清楚怎么开。

 #pragma comment(linker,"/STACK:102400000,102400000")//开栈
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <unordered_map>
#include <stack>
#define LL long long
#define pii pair<int,int>
using namespace std;
const int N=+;
const int INF=0x7f7f7f7f;
int up;
int low[N], dfn[N];
bool iscut[N];
int dfn_clock, bcc_cnt, bcc_no[N];
unordered_map<int,int> mapp;
stack< pii > stac;
vector<int> bcc[N], vect[N]; void DFS(int x, int far)//tarjan
{
dfn[x]=low[x]=++dfn_clock; int chd=;
for(int i=; i<vect[x].size(); i++)
{
int t=vect[x][i];
if(!dfn[t])
{
chd++;
stac.push(make_pair(x,t));
DFS(t,x);
low[x]=min( low[x], low[t]);
if(low[t]>=dfn[x])
{
iscut[x]=true; //需要标记割点
bcc[++bcc_cnt].clear();
while(true)
{
int a=stac.top().first;
int b=stac.top().second;
stac.pop();
if(bcc_no[a]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(a);
bcc_no[a]=bcc_cnt;
}
if(bcc_no[b]!=bcc_cnt)
{
bcc[bcc_cnt].push_back(b);
bcc_no[b]=bcc_cnt;
}
if(a==x&&b==t) break;
}
}
}
else if( dfn[t]<dfn[x] && t!=far)
{
stac.push(make_pair(x,t));
low[x]=min(low[x],dfn[t]);
}
}
if(chd==&&far==) iscut[x]=false; //根
} void find_bcc(int Case)
{
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(iscut,,sizeof(iscut));
memset(bcc_no,,sizeof(bcc_no)); dfn_clock=bcc_cnt=;
for(int i=; i<=up; i++) if(!dfn[i]) DFS(i,); //深搜
LL ans1=,ans2=; for(int i=; i<=bcc_cnt; i++) //统计度为多少
{
int cnt=;
for(int j=; j<bcc[i].size(); j++) if(iscut[bcc[i][j] ]) cnt++; //有割点就统计连通分量i的度。
if(cnt==) ans1++, ans2*=bcc[i].size()-;
}
if(bcc_cnt==) ans1=,ans2=(LL)bcc[].size()*(bcc[].size()-)/;
printf("Case %d: %lld %lld\n", Case, ans1, ans2);
} int main()
{
freopen("input.txt", "r", stdin);
int a, b, n, j=;
while(scanf("%d",&n), n)
{
mapp.clear();
for(int i=; i<N; i++) vect[i].clear();
up=;
for(int i=; i<n; i++)
{
scanf("%d%d",&a,&b);
if(!mapp[a]) mapp[a]=++up;
if(!mapp[b]) mapp[b]=++up;//点号缩小为连续 vect[mapp[a]].push_back(mapp[b]);
vect[mapp[b]].push_back(mapp[a]);
}
find_bcc(++j);
}
return ;
}

AC代码

HDU 3844 Mining Your Own Business(割点,经典)的更多相关文章

  1. HDU 3844 Mining Your Own Business

    首先,如果图本来就是一个点双联通的(即不存在割点),那么从这个图中选出任意两个点就OK了. 如果这个图存在割点,那么我们把割点拿掉后图就会变得支离破碎了.对于那种只和一个割点相连的块,这个块中至少要选 ...

  2. UVALive - 5135 - Mining Your Own Business(双连通分量+思维)

    Problem   UVALive - 5135 - Mining Your Own Business Time Limit: 5000 mSec Problem Description John D ...

  3. HDU3844 Mining Your Own Business

    HDU3844 Mining Your Own Business 问题描述John Digger是一个大型illudium phosdex矿的所有者.该矿山由一系列隧道组成,这些隧道在各个大型交叉口相 ...

  4. 「题解报告」SP16185 Mining your own business

    题解 SP16185 Mining your own business 原题传送门 题意 给你一个无向图,求至少安装多少个太平井,才能使不管那个点封闭,其他点都可以与有太平井的点联通. 题解 其他题解 ...

  5. HDU 2181 哈密顿绕行世界问题(经典DFS+回溯)

    哈密顿绕行世界问题 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  6. HDU 3038 - How Many Answers Are Wrong - [经典带权并查集]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3038 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  7. HDU 1789 Doing Homework again(非常经典的贪心)

    Doing Homework again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

  8. HDU 1180 诡异的楼梯(超级经典的bfs之一,需多回顾)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1180 诡异的楼梯 Time Limit: 2000/1000 MS (Java/Others)     ...

  9. UVA5135 Mining Your Own Business ( 无向图双连通分量)

    题目链接 题意:n条隧道由一些点连接而成,其中每条隧道链接两个连接点.任意两个连接点之间最多只有一条隧道.任务就是在这些连接点中,安装尽量少的太平井和逃生装置,使得不管哪个连接点倒塌,工人都能从其他太 ...

随机推荐

  1. Oracle数据库表的备份和数据表的删除操作

    --Oracle数据库中的表备份: --备份语句:在备份之后就可以将这张表的所有数据源删除了,但是之后有人对这张表的数据进行操作,但是在操作完成之后要记得将数据表恢复 CREATE TABLE DZH ...

  2. 【UOJ】【34】多项式乘法

    快速傅里叶变换模板题 算法理解请看<算法导论>第30章<多项式与快速傅里叶变换>,至于证明插值唯一性什么的看不懂也没关系啦-只要明白这个过程是怎么算的就ok. 递归版:(425 ...

  3. CSS reset--重置样式

    在一般我们写一个自己自定义的HTML的时候,我们会清除样式或者说重置样式 重置样式.清除浏览器默认样式,一切全部用自己的设置,并配置适合设计的基础样式 下面给出所有一般需要清除的样式: html,bo ...

  4. 别让安全问题拖慢了 DevOps!

    DEVSECOPS 所面临的挑战 敏捷开发和 DevOps 方法的出现使软件开发的速度与质量都有所提升,但它们不经意地也为安全机构增压不少.从前的安全策略是基于静态数据的,而在产品上线前才应用这些策略 ...

  5. 【面试题030】最小的k个数

    [面试题030]最小的k个数 题目:     输入n个整数,找出其中最小的k个数.     例如输入4.5.1.6.2.7.3.8这8个字,则其中最小的4个数字是1.2.3.4.     思路一:   ...

  6. Asp.net 上传图片添加半透明图片或者文字水印的方法

    主要用到System.Drawing 命名空间下的相关类,如Brush.Image.Bitmap.Graphics等等类 Image类可以从图片文件创建Image的实例,Bitmap可以从文件也可以从 ...

  7. java基础知识回顾之java Thread类学习(五)--java多线程安全问题(锁)同步的前提

    这里举个例子讲解,同步synchronized在什么地方加,以及同步的前提: * 1.必须要有两个以上的线程,才需要同步. * 2.必须是多个线程使用同一个锁. * 3.必须保证同步中只能有一个线程在 ...

  8. aChartEngine图表显示

    android的数据报表显示 从图中,我们可以看出,绘制一个图表我们其实,我们只需要理解三个概念 1,ChartFactory ,传入XYMutilpleSeriesRenderer,XYMutilp ...

  9. POJ 3318 Matrix Multiplication(矩阵乘法)

    题目链接 题意 : 给你三个n维矩阵,让你判断A*B是否等于C. 思路 :优化将二维转化成一维的.随机生成一个一维向量d,使得A*(B*d)=C*d,多次生成多次测试即可使错误概率大大减小. #inc ...

  10. lintcode:Matrix Zigzag Traversal 矩阵的之字型遍历

    题目: 矩阵的之字型遍历 给你一个包含 m x n 个元素的矩阵 (m 行, n 列), 求该矩阵的之字型遍历. 样例 对于如下矩阵: [ [1, 2, 3, 4], [5, 6, 7, 8], [9 ...