The 3n + 1 problem 

Background

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

The Problem

Consider the following algorithm:


1. input n 2. print n 3. if n = 1 then STOP 4. if n is odd then 5. else 6. GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

The Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

You can assume that no operation overflows a 32-bit integer.

The Output

For each pair of input integers i and j you should output ij, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

Sample Input

1 10
100 200
201 210
900 1000

Sample Output

1 10 20
100 200 125
201 210 89
900 1000 174
 
#include<cstdio>
#include<iostream>
#include<string>
#include<algorithm>
#include<iterator> using namespace std;
#define MAXSIZE 1000000 int cache[MAXSIZE]; int calc_len(long long i)
{
if(i==1)
return 1;
else if(i&1)
{
i+=(i<<1)+1;
}
else
{
i>>=1;
} if(i<MAXSIZE)
{
if(!cache[i])
cache[i]=calc_len(i);
return cache[i]+1;
}
else
{
printf("i=%lld\n", i);
} return calc_len(i)+1;
} int main()
{
int x,y;
int len, maxlen;
while(scanf("%d %d", &x, &y)==2)
{
int b=min(x, y);
int e=max(x, y); maxlen=1;
//calc len
for(int i=b;i<=e;i++)
{
len=calc_len(i);
if(len>maxlen)
maxlen=len;
}
printf("%d %d %d\n",x, y, maxlen); }
return 0;
}
 
总结:
1、用cache缓存结果
2、不要假设输入数据的顺序,大的可能在前,小的在后
3、中间计算结果可能要用long long 保存
 

PC/UVa 题号: 110101/100 The 3n+1 problem (3n+1 问题)的更多相关文章

  1. PC/UVa 题号: 110106/10033 Interpreter (解释器)题解 c语言版

    , '\n'); #include<cstdio> #include<iostream> #include<string> #include<algorith ...

  2. PC/UVa 题号: 110105/10267 Graphical Editor (图形化编辑器)题解

    #include<cstdio> #include<iostream> #include<string> #include<algorithm> #in ...

  3. PC/UVa 题号: 110104/706 LC-Display (液晶显示屏)题解

    #include <string> #include <iostream> #include <cstring> #include <algorithm> ...

  4. 【转】UVa Problem 100 The 3n+1 problem (3n+1 问题)——(离线计算)

    // The 3n+1 problem (3n+1 问题) // PC/UVa IDs: 110101/100, Popularity: A, Success rate: low Level: 1 / ...

  5. The 3n + 1 problem UVA - 100

    3n+1问题 PC/UVa IDs: 110101/100 Popularity: A Success rate: low Level: 1 测试地址: https://vjudge.net/prob ...

  6. UVa 100 - The 3n + 1 problem(函数循环长度)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  7. UVA 100 - The 3n+1 problem (3n+1 问题)

    100 - The 3n+1 problem (3n+1 问题) /* * 100 - The 3n+1 problem (3n+1 问题) * 作者 仪冰 * QQ 974817955 * * [问 ...

  8. HDU 1032 The 3n + 1 problem (这个题必须写博客)

    The 3n + 1 problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem A: The 3n + 1 problem(水题)

    Problem A: The 3n + 1 problem Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 14  Solved: 6[Submit][St ...

随机推荐

  1. 【转】iOS中定时器NSTimer的使用

    原文网址:http://www.cnblogs.com/zhulin/archive/2012/02/02/2335866.html 1.初始化 + (NSTimer *)timerWithTimeI ...

  2. javascript一些有用但又不常用的特性

    1.onclick="save();return false;" 取消“浏览器默认行为”.     比如一个链接     <a href="http://zhida ...

  3. 深入浅出 iOS 之生命周期

    转:http://blog.csdn.net/kesalin/article/details/6691766 iOS应用程序的生命周期相比 Android 应用程序的生命周期来说,没那么简明易懂,但是 ...

  4. 值班问题:insert语句插入了两条数据?

    上周值班,碰到这样的一个客户问题,表结构简化如下: CREATE TABLE `aa` (`c1` int(10) unsigned NOT NULL AUTO_INCREMENT,`c2` int( ...

  5. POJ 3067 Japan

    Japan Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25489   Accepted: 6907 Descriptio ...

  6. How to easily create popup menu for DevExpress treelist z

    http://www.itjungles.com/how-to-easily-create-popup-menu-for-devexpress-treelist.html Adding popup m ...

  7. asp调用.net xml web services

    来源:http://www.cnblogs.com/notus/archive/2006/08/10/473000.html#2662503 (是不是实际上可以用这个办法调用任何xml web ser ...

  8. STL六大组件之——仿函数偷窥

    仿函数(functor),就是使一个类或类模板的使用看上去象一个函数.其实现就是类或类模板中对operator()进行重载,这个类或类模板就有了类似函数的行为.仿函数是智能型函数就好比智能指针的行为像 ...

  9. DOM笔记(二):Node接口

    所有的节点都使用Node接口来表示,可以使用很多方法去获取节点,如document.getElementsByTagName().document.getElementsByName()等均返回一个N ...

  10. 【暑假】[基本数据结构]根据in_order与post_order构树

    Tree Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Submit Status Des ...