The 3n + 1 problem 

Background

Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.

The Problem

Consider the following algorithm:


1. input n 2. print n 3. if n = 1 then STOP 4. if n is odd then 5. else 6. GOTO 2

Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that 0 < n < 1,000,000 (and, in fact, for many more numbers than this.)

Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16.

For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j.

The Input

The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0.

You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j.

You can assume that no operation overflows a 32-bit integer.

The Output

For each pair of input integers i and j you should output ij, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line).

Sample Input

1 10
100 200
201 210
900 1000

Sample Output

1 10 20
100 200 125
201 210 89
900 1000 174
 
#include<cstdio>
#include<iostream>
#include<string>
#include<algorithm>
#include<iterator> using namespace std;
#define MAXSIZE 1000000 int cache[MAXSIZE]; int calc_len(long long i)
{
if(i==1)
return 1;
else if(i&1)
{
i+=(i<<1)+1;
}
else
{
i>>=1;
} if(i<MAXSIZE)
{
if(!cache[i])
cache[i]=calc_len(i);
return cache[i]+1;
}
else
{
printf("i=%lld\n", i);
} return calc_len(i)+1;
} int main()
{
int x,y;
int len, maxlen;
while(scanf("%d %d", &x, &y)==2)
{
int b=min(x, y);
int e=max(x, y); maxlen=1;
//calc len
for(int i=b;i<=e;i++)
{
len=calc_len(i);
if(len>maxlen)
maxlen=len;
}
printf("%d %d %d\n",x, y, maxlen); }
return 0;
}
 
总结:
1、用cache缓存结果
2、不要假设输入数据的顺序,大的可能在前,小的在后
3、中间计算结果可能要用long long 保存
 

PC/UVa 题号: 110101/100 The 3n+1 problem (3n+1 问题)的更多相关文章

  1. PC/UVa 题号: 110106/10033 Interpreter (解释器)题解 c语言版

    , '\n'); #include<cstdio> #include<iostream> #include<string> #include<algorith ...

  2. PC/UVa 题号: 110105/10267 Graphical Editor (图形化编辑器)题解

    #include<cstdio> #include<iostream> #include<string> #include<algorithm> #in ...

  3. PC/UVa 题号: 110104/706 LC-Display (液晶显示屏)题解

    #include <string> #include <iostream> #include <cstring> #include <algorithm> ...

  4. 【转】UVa Problem 100 The 3n+1 problem (3n+1 问题)——(离线计算)

    // The 3n+1 problem (3n+1 问题) // PC/UVa IDs: 110101/100, Popularity: A, Success rate: low Level: 1 / ...

  5. The 3n + 1 problem UVA - 100

    3n+1问题 PC/UVa IDs: 110101/100 Popularity: A Success rate: low Level: 1 测试地址: https://vjudge.net/prob ...

  6. UVa 100 - The 3n + 1 problem(函数循环长度)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  7. UVA 100 - The 3n+1 problem (3n+1 问题)

    100 - The 3n+1 problem (3n+1 问题) /* * 100 - The 3n+1 problem (3n+1 问题) * 作者 仪冰 * QQ 974817955 * * [问 ...

  8. HDU 1032 The 3n + 1 problem (这个题必须写博客)

    The 3n + 1 problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  9. 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem A: The 3n + 1 problem(水题)

    Problem A: The 3n + 1 problem Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 14  Solved: 6[Submit][St ...

随机推荐

  1. 【Java集合框架】规则集--Set

    集合: Java主要支持三种: 1.规则集(Set) 用于存储一组不重复的元素 2.线性表(List) 用于存储一个由元素构成的有序集合 3.队列(Queue) 同与数据结构中的队列,存储用先进先出的 ...

  2. System.arraycopy方法

    数组的复制有多种方法,其中有一种就是System.arraycopy方法,传闻速度也很快. 方法完整签名: public static void arraycopy(Object src, int s ...

  3. hdu 2459 (后缀数组+RMQ)

    题意:让你求一个串中连续重复次数最多的串(不重叠),如果重复的次数一样多的话就输出字典序小的那一串. 分析:有一道比这个简单一些的题spoj 687, 假设一个长度为l的子串重复出现两次,那么它必然会 ...

  4. Conversion to Dalvik format failed: Unable to execute dex: null

    [2013-11-19 14:18:48 - Dex Loader] Unable to execute dex: java.nio.BufferOverflowException. Check th ...

  5. PIG的配置

    Pig是一个客户端应用程序,就算你要在Hadoop集群上运行Pig,也不需要在集群上装额外的东西.Pig的配置非常简单: 1.下载pig,网址http://pig.apache.org/ 2.在机器上 ...

  6. java解析XML四种方法

    XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML. XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便 ...

  7. Dev gridControl 按回车增加一行

    将NewItemRowPosition属性设置为Top或Bottom, 在这样的新行中输入数据后,会自动添加到绑定的数据源中的, 如果你希望在按回车时焦点跳至下一列, 只需要设置GridView的Op ...

  8. 获取json中字段,判断是否有想要的key

    if(json.containsKey("key")){ String refundSid = json.getString("key"); } 如果也要判断v ...

  9. iOS多线程之GCD小记

    iOS多线程之GCD小记 iOS多线程方案简介 从各种资料中了解到,iOS中目前有4套多线程的方案,分别是下列4中: 1.Pthreads 这是一套可以在很多操作系统上通用的多线程API,是基于C语言 ...

  10. (转载)OC学习篇之---@class关键字的作用以及#include和#import的区别

    前一篇文章说到了OC中类的三大特性,今天我们来看一下在学习OC的过程中遇到的一些问题,该如何去解决,首先来看一下我们之前遗留的一个问题: 一.#import和#include的区别 当我们在代码中使用 ...