SQL Server 中的事务和锁(三)-Range S-U,X-X 以及死锁
在上一篇中忘记了一个细节。Range T-K 到底代表了什么?Range T-K Lock 代表了在 SERIALIZABLE 隔离级别中,为了保护范围内的数据不被并发的事务影响而使用的一类锁模式(避免幻读)。它由两个部分构成:
第一个部分代表了他锁定了一个索引范围,在这个范围内,所有索引使用 T 锁进行锁定;
第二个部分是而这个范围内已经命中的Key,这些 Key 将使用 K 锁进行锁定。
合并在一起我们说在这个范围内,索引范围和特定的row的锁定模式为 Range T-K。
举上一篇的一个例子吧:
SELECT [data] FROM [MyTable] WHERE [index_column]>=20 AND [index_column]<=40
的锁的使用情况是:
实际上,上述语句产生的锁有两个部分,第一个是 Range S 锁,范围是 20-40 的索引范围,第二是 Key 上使用的 S 锁,在图中可以看到有三个 Key 被命中了,分别是“无限远”,“25”对应的索引以及“30”对应的索引。其 Mode 为 Range S-S,其 Type 为 KEY,也就是,他们的范围锁为 Range S,Key 锁为 S 锁。
更新和插入操作涉及的锁
涉及的锁主要是两种,一种是 Range S-U 锁,另一种是 Range X-X 锁。
Range S-U,这个选定索引范围会获得 S 锁而命中的 Key 使用 U 锁锁定,以便将来转换为 X 锁。而在更新时,则彻底成为 X 锁,这个范围内的锁模式也就成了 Range X-X。由于更新的数据列不同(有可能是索引列,有可能不是),使用的索引也不同(聚集,非聚集,唯一,等),因此其情况就不容易像 Range S-S 锁那么容易得出规律了。总的来说有几种情况还是一致的,这里就不再逐个实验了(这里强烈推荐阅读 SQL Server 2008 Internals 这本书关于锁的章节,讲述的很清楚):
首先,在相等判断(例如“=”),且索引为唯一索引的情况下。如果该索引命中,不会有 Range T-K 锁锁定记录范围,而相应的记录直接获得 U 锁或者 X 锁;
其次,在相等判断,不论索引是否为唯一索引,如果该索引没有命中记录,则 Range T-K 锁锁定 “下一个”记录。(关于“下一个”的解释请参见上一篇);
第三,在范围条件(>、<、BETWEEN),不论索引是否唯一,如果该索引命中,不但该范围会获得 Range T-K 锁,而该范围的“下一个”记录也会获得 Range T-K 锁。
为什么 Serializable 隔离级别更容易死锁
我们从第一篇的图可以看到,SERIALIZABLE 级别能够保证最严格的数据一致性,但是这些保卫的手段只要稍稍变化就可以发展为死锁。事实上,在各种隔离级别中,数据一致性越高,则越容易发生死锁;数据一致性越低,则发生死锁的概率就越小。
在这些隔离级别中,SERIALIZABLE 是最容易死锁的,这得益于 Range T-K 锁使锁定的范围不仅仅限于现有数据,还有未来数据;不仅仅限定现有的若干数据页,而是一个广大的范围。
这其中,最恐怖的问题莫过于“下一个”数据的锁定。这非常容易造成大范围死锁。我们以第一篇的例子来说明:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
SELECT @findCount= COUNT (id) FROM MyTable WHERE [fk_related_id]=@Argument IF (@findCount > 0) BEGIN ROLLBACK TRANSACTION RETURN ERROR_CODE END INSERT INTO MyTable ([fk_related_id],…) VALUES (@Argument,…) COMMIT TRANSACTION RETURN SUCCESS_CODE |
在这个例子中,表 MyTable 的列 fk_related_id 是一个唯一索引(非聚集),事务隔离级别为 SERIALIZABLE。不同的存储过程执行会传入不同的 @Argument,表面看来,这不会有任何的问题,但是由于“下一个”数据的锁定,在稍高水平的并发上,就出现了大约 80% 的失败情况,这些失败都来源于死锁。我们挑选了其中的一次:
我们试图以每秒钟 15 个的压力在 @Argument 属于 [1, 1000] 的范围内进行存储过程调用。在这个过程中,有一个 @Argument 为 115 的记录首先成功的插入了进去!
id | fk_related_id | data |
1 | 115 | … |
接下来有一个 @Argument 为 74 的记录获得了机会,我们假设它的 Session Id 为 A。它执行了 SELECT 语句:
id | fk_related_id | data |
1 | 115 (A 获得了Range S-S Lock) | … |
接下来有一个 @Argument 为 4 的记录获得了机会,我们假设它的 Session Id 为 B。它执行了 SELECT 语句:
id | fk_related_id | data |
115 (A 、B获得了Range S-S Lock) | … |
接下来,Session A 执行到了 INSERT 语句,那么 Range S-S 锁会试图进行一个转换测试(Range I-N 锁),但这显然是行不通的,因为 Session B 也获得了 Range S-S Lock,因此 Session A 陷入了等待;
而 Session B 也执行到了 INSERT 语句,相同的,它也陷入了等待;这样,Session A 等待 Session B 放弃 Range 锁,Session B 等待 Session A 放弃锁,这是一个死锁了。
而更糟糕的事情是,凡是 @Argument 小于 115 的记录,他都会试图令下一个记录获得新的 Range S-S 锁,从而进入无限的等待中,至少,1-115 号记录死锁,并且最终 114 个需要放弃,1个成功。这就是为什么 SERIALIZABLE 隔离级别不但会发生死锁,而且在某些时候,是大面积死锁。
总之:在 SERIALIZABLE 隔离级别下,只要有类似同一索引为条件先读后写的状况的,在较大并发下发生死锁的概率很高,而且如果碰巧既有的记录索引按照排序规则在非常靠后的位置,则很可能发生大面积死锁。
那么如何解决这个问题呢,呃,降低隔离级别当然是一个方法,例如,如果你能接受幻读,那么 REPEATABLE READ 是一个不错的选择。但是我突然在某篇博客中看到了使用 SELECT WITH UPDLOCK 的方法。事实上,这种东西让死锁更容易了。
例如,一个存储过程 SELECT B,而后 SELECT A;而另外的存储过程先 SELECT A,再 SELECT B,那么由于顺序不同,排他锁仅仅是 Read 的情况就可能发生死锁了。
那么为什么 REPEATABLE READ 会好得多呢?因为 REPEATABLE READ 紧紧锁定现有记录,而不会使用 Range 锁。我们仍然以上述存储过程为例,这样,只有两个被锁定的行数据在同一个页上(因为默认情况下使用页级锁),或者说挨得足够近,才有可能死锁,并且这个死锁仅仅限于这个数据页上的记录而不会影响其他记录,因此死锁的概率大大降低了。
我们实际测试中,在相同的测试条件下,并发提高到 100 的情况下时才有不到 0.1% 的死锁失败几率。当然我们付出了允许幻读的代价。
SQL Server 中的事务和锁(三)-Range S-U,X-X 以及死锁的更多相关文章
- 【转】SQL Server中的事务与锁
SQL Server中的事务与锁 了解事务和锁 事务:保持逻辑数据一致性与可恢复性,必不可少的利器. 锁:多用户访问同一数据库资源时,对访问的先后次序权限管理的一种机制,没有他事务或许将会一塌糊涂 ...
- SQL Server中的事务与锁
了解事务和锁 事务:保持逻辑数据一致性与可恢复性,必不可少的利器. 锁:多用户访问同一数据库资源时,对访问的先后次序权限管理的一种机制,没有他事务或许将会一塌糊涂,不能保证数据的安全正确读写. 死锁: ...
- [转载]SQL Server中的事务与锁
了解事务和锁 事务:保持逻辑数据一致性与可恢复性,必不可少的利器. 锁:多用户访问同一数据库资源时,对访问的先后次序权限管理的一种机制,没有他事务或许将会一塌糊涂,不能保证数据的安全正确读写. 死锁: ...
- T-SQL查询进阶--SQL Server中的事务与锁
为什么需要锁 在任何多用户的数据库中,必须有一套用于数据修改的一致的规则,当两个不同的进程试图同时修改同一份数据时,数据库管理系统(DBMS)负责解决它们之间潜在的冲突.任何关系数据库必须支持事务的A ...
- 十五、SQL Server中的事务与锁
(转载别人的内容,值得Mark) 了解事务和锁 事务:保持逻辑数据一致性与可恢复性,必不可少的利器. 锁:多用户访问同一数据库资源时,对访问的先后次序权限管理的一种机制,没有他事务或许将会一塌糊涂,不 ...
- (转)SQL Server 中的事务和锁(三)-Range S-U,X-X 以及死锁
在上一篇中忘记了一个细节.Range T-K 到底代表了什么?Range T-K Lock 代表了在 SERIALIZABLE 隔离级别中,为了保护范围内的数据不被并发的事务影响而使用的一类锁模式(避 ...
- Microsoft SQL Server中的事务与并发详解
本篇索引: 1.事务 2.锁定和阻塞 3.隔离级别 4.死锁 一.事务 1.1 事务的概念 事务是作为单个工作单元而执行的一系列操作,比如查询和修改数据等. 事务是数据库并发控制的基本单位,一条或者一 ...
- SQL Server 中的事务与事务隔离级别以及如何理解脏读, 未提交读,不可重复读和幻读产生的过程和原因
原本打算写有关 SSIS Package 中的事务控制过程的,但是发现很多基本的概念还是需要有 SQL Server 事务和事务的隔离级别做基础铺垫.所以花了点时间,把 SQL Server 数据库中 ...
- Sql Server中的事务隔离级别
数据库中的事物有ACID(原子性,一致性,隔离性,持久性)四个特性.其中隔离性是用来处理并发执行的事务之间的数据访问控制.SqlServer中提供了几种不同级别的隔离类型. 概念 Read UnCom ...
随机推荐
- 转】用Maven构建Hadoop项目
原博文出自于: http://blog.fens.me/hadoop-maven-eclipse/ 感谢! 用Maven构建Hadoop项目 Hadoop家族系列文章,主要介绍Hadoop家族产品 ...
- UVALive 7455 Linear Ecosystem (高斯消元)
Linear Ecosystem 题目链接: http://acm.hust.edu.cn/vjudge/contest/127401#problem/B Description http://7xj ...
- centos下安装mysql不能启动
初学者犯了个错误:yum安装mysql的命令是:yum -y install mysql-server,而不是yum -y install mysql ----------------------以下 ...
- mysql kill操作
KILL语法 KILL [CONNECTION | QUERY] thread_id 每个与mysqld的连接都在一个独立的线程里运行,您可以使用SHOW PROCESSLIST语句查看哪些线程正在运 ...
- iOS KVC/KVO/KVB
看了那么多博客.描述那么复杂,其实KVC很简单,没描述的那么复杂,所以写一篇简单的易于理解的博文,切入正文: 1.KVC底层是通过runtime对method和value操作 比如说如下的一行KVC ...
- FZU 2129 子序列个数 (递推dp)
题目链接:http://acm.fzu.edu.cn/problem.php?pid=2129 dp[i]表示前i个数的子序列个数 当a[i]在i以前出现过,dp[i] = dp[i - 1]*2 - ...
- CentOS6 下Vim安装和配置
1.系统只安装了vim-minimal,执行以下命令安装另外两个组件 yum install vim-common yum install vim-enhanced 2.安装ctags yum ins ...
- python 缩进问题
200 ? "200px" : this.width)!important;} --> 介绍 在python中认为规定4个空格缩进,缩进的代码可以理解成一个块,但是使用缩进也 ...
- android 工具类之SharePreference
/** * SharedPreferences的一个工具类,调用setParam就能保存String, Integer, Boolean, Float, Long类型的参数 * 同样调用getPara ...
- [ASP.NET]更简单的方法:FormsAuthentication登录ReturnUrl使用绝对路径
转自:http://www.cnblogs.com/dudu/p/formsauthentication-returnurl-absoluteuri.html [ASP.NET]更简单的方法:Form ...