设 $\phi:[k_0,\infty)\to[0,\infty)$ 是有界递减函数, 并且 $$\bex \phi(k)\leq \sex{\frac{A}{h-k}}^\al\phi(h)^\beta,\quad k>h\geq k_0, \eex$$ 其中 $A,\al>0$, $\beta>1$. 试证: $$\bex \phi(k_0+d)=0, \eex$$ 其中 $$\bex d=A\phi(k_0)^{\frac{\beta-1}{\al}}2^\frac{\beta}{\beta-1}. \eex$$

证明: 提示: 选取迭代序列 $$\bex k_s=k_0+d-\frac{d}{2^s},\quad s=0,1,2,\cdots, \eex$$ 并用数学归纳法证明 $$\bex \phi(k_s)\leq \frac{\phi(k_0)}{r^s},\quad s=0,1,2,\cdots, \eex$$ 其中 $r$ 待定 ($=2^\frac{\al}{\beta-1}$).

[Everyday Mathematics]20150205的更多相关文章

  1. [Everyday Mathematics]20150304

    证明: $$\bex \frac{2}{\pi}\int_0^\infty \frac{1-\cos 1\cos \lm-\lm \sin 1\sin \lm}{1-\lm^2}\cos \lm x\ ...

  2. [Everyday Mathematics]20150303

    设 $f$ 是 $\bbR$ 上的 $T$ - 周期函数, 试证: $$\bex \int_T^\infty\frac{f(x)}{x}\rd x\mbox{ 收敛 } \ra \int_0^T f( ...

  3. [Everyday Mathematics]20150302

    $$\bex |p|<\frac{1}{2}\ra \int_0^\infty \sex{\frac{x^p-x^{-p}}{1-x}}^2\rd x =2(1-2p\pi \cot 2p\pi ...

  4. [Everyday Mathematics]20150301

    设 $f(x)$ 在 $[-1,1]$ 上有任意阶导数, $f^{(n)}(0)=0$, 其中 $n$ 是任意正整数, 且存在 $C>0$, $$\bex |f^{(n)}(x)|\leq C^ ...

  5. [Everyday Mathematics]20150228

    试证: $$\bex \int_0^\infty \sin\sex{x^3+\frac{\pi}{4}}\rd x =\frac{\sqrt{6}+\sqrt{2}}{4}\int_0^\infty ...

  6. [Everyday Mathematics]20150227

    (Marden's Theorem) 设 $p(z)$ 是三次复系数多项式, 其三个根 $z_1,z_2,z_3$ 不共线; 再设 $T$ 是以 $z_1,z_2,z_3$ 为顶点的三角形. 则存在唯 ...

  7. [Everyday Mathematics]20150226

    设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$

  8. [Everyday Mathematics]20150225

    设 $f:\bbR\to\bbR$ 二次可微, 适合 $f(0)=0$. 试证: $$\bex \exists\ \xi\in\sex{-\frac{\pi}{2},\frac{\pi}{2}},\s ...

  9. [Everyday Mathematics]20150224

    设 $A,B$ 是 $n$ 阶实对称矩阵, 它们的特征值 $>1$. 试证: $AB$ 的特征值的绝对值 $>1$.

随机推荐

  1. java基础知识回顾之java Socket学习(二)--TCP协议编程

    TCP传输(传输控制协议):TCP协议是一种面向连接的,可靠的字节流服务.当客户端和服务器端彼此交换数据前,必须先在双方之间建立一个TCP连接,之后才能进行数据的传输.它将一台主机发出的字节流无差错的 ...

  2. 将DJANGO管理界面的filter_horizontal移到前面来复用

    参考URL: http://www.hoboes.com/Mimsy/hacks/replicating-djangos-admin/reusing-djangos-filter_horizontal ...

  3. 关于C#中timer类

    ·关于C#中timer类 在C#里关于定时器类就有3个 1.定义在System.Windows.Forms里 2.定义在System.Threading.Timer类里 3.定义在System.Tim ...

  4. linux网站推荐

    推荐几个Liux中文学些网站. http://www.chinaunix.net/http://linux.cn/http://www.linuxidc.com/

  5. 用 EasyBCD 在 Win7/8 中硬盘安装 Ubuntu

    写在前面: 1. 我装的是ubuntu 13.10 64位,不一样的地方是,从casper文件夹复制出来的文件不是vmlinuz,而是vmlinuz.efi,相应的,menu.lst里也要将vmlin ...

  6. 套题T5//各种树

    树(tree) [题目描述] 方方方种下了三棵树,一年后,第一棵树长出了n个节点. 方方方会向你提出m个询问,每个询问给出两个数i,j,你需要回答i号节点和j号节点在树上的距离. [输入数据] 第一行 ...

  7. lintcode : 二叉树的层次遍历II

    题目 二叉树的层次遍历 II 给出一棵二叉树,返回其节点值从底向上的层次序遍历(按从叶节点所在层到根节点所在的层遍历,然后逐层从左往右遍历) 样例 给出一棵二叉树 {3,9,20,#,#,15,7}, ...

  8. lintcode:数字三角形

    题目: 数字三角形 给定一个数字三角形,找到从顶部到底部的最小路径和.每一步可以移动到下面一行的相邻数字上. 样例 比如,给出下列数字三角形: [      [2],     [3,4],    [6 ...

  9. 【mongoDB高级篇②】大数据聚集运算之mapReduce(映射化简)

    简述 mapReduce从字面上来理解就是两个过程:map映射以及reduce化简.是一种比较先进的大数据处理方法,其难度不高,从性能上来说属于比较暴力的(通过N台服务器同时来计算),但相较于grou ...

  10. 246. Strobogrammatic Number

    题目: A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at ups ...