https://dev.mysql.com/doc/refman/5.6/en/subquery-optimization.html

Semi-join in MySQL 5.6

 
MySQL 5.6.5 Development Milestone Release has a whole new set of algorithms for processing subqueries. It is based on transforming a subquery into a semi-join operation, and then treating semi-join like another join operation throughout the optimizer.

A subquery can be transformed to a semi-join if it matches these criteria:

  • The subquery is part of an IN or =ANY predicate. It cannot be e.g. NOT IN.
  • The subquery consists of a single query block (it must not contain UNION).
  • The subquery does not contain GROUP BY or HAVING.
  • The subquery is not implicitly grouped (it contains no aggregate functions).
  • The subquery predicate is part of a WHERE clause.
  • The subquery predicate must not be part of a disjunctive nor a negated search condition.
  • Neither query block contains the STRAIGHT_JOIN qualifier.
  • The statement must be a SELECT or INSERT statement. Semi-joins are not allowed with UPDATE or DELETE statements.
上面这段话的中文翻译
semi join的定义点wiki, MySQL需要满足如下条件,才会转换成Semi-join
#子查询是IN或者=ANY的,不可以是NOT IN
#子查询只能包含一个Query block,不可以有UNION等操作
#子查询不能包含GROUP BY或者HAVING
#子查询不能包含聚合函数
#子查询谓语不可以是外接查询条件或者否定查询条件
#不可以包含STRAIGHT_JOIN限定词
#Semi-join只能用于SELECT或者INSERT,不可用于UPDATE和DELETE
 
Example subquery that can be transformed to a semi-join:
 
  SELECT * FROM nation
  WHERE n_regionkey IN (SELECT r_regionkey FROM region
                        WHERE r_name='AFRICA');

What is a semi-join operation

A semi-join operation is similar to a regular join operation: It takes two (sets of) tables and combines them using a join condition.
 
Like an outer join, a semi-join is a noncommutative join operator. We denote the tables of the containing query block the outer tables and the tables of the subquery the inner tables.
 
Two factors distinguish a semi-join from a regular join:
  • In a semi-join, the inner tables do not cause duplicates in the result.
  • No columns from the inner tables are added to the result of the operation.
This means that the result of the semi-join is a subset of the rows from the outer tables. It also means that much of the special handling of semi-join is about efficiently eliminating duplicates from the inner tables.
 
We can represent the above query using the artificial SEMI JOIN operator as follows:
 
  SELECT nation.*
  FROM nation SEMI JOIN region
       ON nation.n_regionkey = region.r_regionkey AND
          region.r_name='AFRICA';

Semi-join optimization

If possible, a subquery is transformed into a semi-join during the query resolution stage. The query blocks containing the outer tables and the inner tables are then combined into a larger query block.
 
The next step of the optimization is to determine inner tables that are candidate for table pullout. If the inner table of a semi-join has an eq-ref relationship to the outer part of the query, there can be no duplicates from the inner side, and the semi-join can be converted to a regular join. We call that a table pullout, because the table is "pulled out" from the semi-join and joined with the outer tables.
 
The above subquery can be transformed using table pullout, because there is a unique index on the r_regionkey column. The explain result of the query is as follows:
 
| id | select_type | table  | type | possible_keys | key           | key_len | ref                     | rows | Extra       |
+----+-------------+--------+------+---------------+---------------+---------+-------------------------+------+-------------+
| 1 | PRIMARY | region | ALL | PRIMARY | NULL | NULL | NULL | 5 | Using where |
| 1 | PRIMARY | nation | ref | i_n_regionkey | i_n_regionkey | 5 | dbt3.region.r_regionkey | 2 | |
 
 
As you can see, there is no difference between this explain result and the explain result of a regular join between these two tables.
 
The cost-based optimization procedure is then applied to the tables of the query block. Tables taking part in semi-joins are combined in various ways, with the appropriate cost added to the total plan cost. The end result is an optimal table order and an optimal set of semi-join execution strategies.

Semi-join execution strategies

As said before, semi-join is a regular join operation, combined with removal of possible duplicates from the semi-join inner tables. MySQL implements four different semi-join execution strategies, which have different ways of removing duplicates:
  1. FirstMatch
  2. DuplicateWeedout
  3. Materialization
  4. LooseScan
I will handle the FirstMatch strategy in more detail below. The other semi-join strategies will be handled in later blogs. How semi-join strategies can be combined with join buffering will also be handled.

Controlling semi-join strategies

Use of semi-join is controlled with the optimizer_switch flag semijoin:
 
  set optimizer_switch='semijoin=on'
 
This command enables transformation of subqueries into semi-join operations. This flag is on by default in MySQL 5.6.5.
 
In addition, individual semi-join strategies can be turned on and off with the following optimizer_switch flags:
 
  firstmatch, materialization, loosescan
 
These flags enable or disable the use of the respective semi-join strategies. Notice that there is no way to disable the DuplicateWeedout strategy, as this is the "last resort" strategy selected by the cost-based optimizer. There is also no way to disable the TablePullout strategy, when semi-join is enabled.
 
The default for all semi-join related optimizer_switch flags are:
 
  'semijoin=on,firstmatch=on,materialization=on,loosescan=on'
 
Notice also that the optimizer_switch flag materialization has a second meaning: It controls the use of the subquery materialization feature (which should not be confused with the semi-join materialization strategy).

Semi-join FirstMatch strategy

The semi-join FirstMatch strategy executes a subquery very similar to how the IN-TO-EXISTS strategy familiar from earlier versions of MySQL works: for each matching row in the outer table, check for a match in the inner table. When a match is found, return the row from the outer table, otherwise continue scanning the inner table until reaching the end.
 
Here is a query that is processed using FirstMatch strategy:
 
  SELECT * FROM nation
  WHERE n_nationkey IN (SELECT c_nationkey FROM customer);
 
Notice the FirstMatch(nation) indication in explain output, which means that after a match has been found in table customer, the query executor goes back to scan more rows in table nation:
 
| id | select_type | table    | type | possible_keys | key           | key_len | ref                     | rows | Extra                           |
+----+-------------+----------+------+---------------+---------------+---------+-------------------------+------+---------------------------------+
| 1 | PRIMARY | nation | ALL | PRIMARY | NULL | NULL | NULL | 25 | |
| 1 | PRIMARY | customer | ref | i_c_nationkey | i_c_nationkey | 5 | dbt3.nation.n_nationkey | 1115 | Using index; FirstMatch(nation) |
 
Here is the result from IN-TO-EXISTS transformation, which can still be enabled by setting optimizer_switch flags:
 
set optimizer_switch='semijoin=off,materialization=off' :
 
| id | select_type        | table    | type           | possible_keys | key           | key_len | ref  | rows | Extra       |
+----+--------------------+----------+----------------+---------------+---------------+---------+------+------+-------------+
| 1 | PRIMARY | nation | ALL | NULL | NULL | NULL | NULL | 25 | Using where |
| 2 | DEPENDENT SUBQUERY | customer | index_subquery | i_c_nationkey | i_c_nationkey | 5 | func | 1115 | Using index |
 
As this is basically the same strategy that MySQL 5.5 would choose, there is usually no speedup to gain when FirstMatch is chosen. The advantage may however come when FirstMatch is not the most efficient strategy, or when the cost-based optimizer chooses a more efficient table order. The optimizer can determine a better table order, because it will estimate a realistic cost for a semi-join operation. This contrasts MySQL 5.5 where the placement of a subquery in the query plan was strictly rule-based.

Multiple subqueries

It is possible to combine multiple subqueries with AND and still have them transformed to a semi-join:
 
  SELECT * FROM nation
  WHERE n_regionkey IN (SELECT r_regionkey FROM region
                        WHERE r_name='AFRICA') AND
        n_nationkey IN (SELECT c_nationkey FROM customer);
 
The explain output shows one FirstMatch strategy:
 
| id | select_type | table    | type | possible_keys         | key           | key_len | ref                     | rows | Extra                           |
+----+-------------+----------+------+-----------------------+---------------+---------+-------------------------+------+---------------------------------+
| 1 | PRIMARY | region | ALL | PRIMARY | NULL | NULL | NULL | 5 | Using where |
| 1 | PRIMARY | nation | ref | PRIMARY,i_n_regionkey | i_n_regionkey | 5 | dbt3.region.r_regionkey | 2 | |
| 1 | PRIMARY | customer | ref | i_c_nationkey | i_c_nationkey | 5 | dbt3.nation.n_nationkey | 1115 | Using index; FirstMatch(nation) |

Nested subqueries

MySQL can process nested subqueries and transform them into one semi-join operation. Here is a slightly artificial example:
 
  SELECT * FROM nation
  WHERE n_nationkey IN
     (SELECT c_nationkey FROM customer
      WHERE c_acctbal IN
         (SELECT o_totalprice FROM orders
          WHERE o_orderstatus = 'P'));
 
From the explain output, we see a FirstMatch strategy applied to tables customer and order, jumping back to table nation when a match is found:
 
| id | select_type | table    | type | possible_keys | key           | key_len | ref                     | rows    | Extra                           |
+----+-------------+----------+------+---------------+---------------+---------+-------------------------+---------+---------------------------------+
| 1 | PRIMARY | nation | ALL | PRIMARY | NULL | NULL | NULL | 25 | |
| 1 | PRIMARY | customer | ref | i_c_nationkey | i_c_nationkey | 5 | dbt3.nation.n_nationkey | 1115 | |
| 1 | PRIMARY | orders | ALL | NULL | NULL | NULL | NULL | 1486350 | Using where; FirstMatch(nation) |

mysql5.6子查询的优化的更多相关文章

  1. MySQL子查询的优化

    本文基于MySQL5.7.19测试 创建四张表,pt1.pt2表加上主键 mysql> create table t1 (a1 int, b1 int); mysql> create ta ...

  2. MySQL 子查询(四)子查询的优化、将子查询重写为连接

    MySQL 5.7 ref ——13.2.10.10优化子查询 十.子查询的优化 开发正在进行中,因此从长远来看,没有什么优化建议是可靠的.以下列表提供了一些您可能想要使用的有趣技巧.See also ...

  3. 优化系列 | DELETE子查询改写优化

    0.导读 有个采用子查询的DELETE执行得非常慢,改写成SELECT后执行却很快,最后把这个子查询DELETE改写成JOIN优化过程 1.问题描述 朋友遇到一个怪事,一个用子查询的DELETE,执行 ...

  4. Mysql查询优化器之关于子查询的优化

    下面这些sql都含有子查询: mysql> select * from t1 where a in (select a from t2); mysql> select * from (se ...

  5. mysql关联、子查询索引优化

    1.驱动表:加索引不起作用,因为全表扫描.表1 left join 表2 ,此时表1是驱动表 被驱动表:给这个加索引.  关联查询  子查询时 尽量不使用not in 或者not exists 而是用 ...

  6. oracle查询优化之子查询条件优化

    环境:oracle 11g 现有a表与b表通过a01字段关联,要查询出a表的数据在b表没有数据的数据:sql如下 ) ) 因为flag是虚拟字段没有走不了索引导致这条sql执行起来特别慢 310W条数 ...

  7. 深入理解MySql子查询IN的执行和优化

    IN为什么慢? 在应用程序中使用子查询后,SQL语句的查询性能变得非常糟糕.例如: SELECT driver_id FROM driver where driver_id in (SELECT dr ...

  8. MySQL的一次优化记录 (IN子查询和索引优化)

    这两天实习项目遇到一个网页加载巨慢的问题(10多秒),然后定位到是一个MySQL查询特别慢的语句引起的: SELECT * FROM ( SELECT DISTINCT t.vc_date, t.c_ ...

  9. 聊聊MySQL的子查询

    1. 背景 在之前介绍MySQL执行计划的博文中已经谈及了一些关于子查询相关的执行计划与优化.本文将重点介绍MySQL中与子查询相关的内容,设计子查询优化策略,包含半连接子查询的优化与非半连接子查询的 ...

随机推荐

  1. c#中HttpWebRequest使用Proxy实现指定IP的域名请求

    原文:http://www.cnblogs.com/greenerycn/archive/2010/04/11/httpwebreques_host_modify_By_set_proxy.html ...

  2. ASP .NET 如何在 SQL 查询层面实现分页

    [编者按]本文作者为来自巴基斯坦的软件开发工程师 Aqeeel,主要介绍了在 SQL 查询层面实现 ASP.NET 应用的分页方法. 本文系 OneAPM 工程师编译呈现,以下为正文. GridVie ...

  3. IP地址总结

    1.网际协议IP : 网际协议 IP 是 TCP/IP 体系中两个最主要的协议之一.与 IP 协议配套使用的还有四个协议: 地址解析协议 ARP (Address Resolution Protoco ...

  4. C Primer Plus之高级数据表示

     抽象数据类型(ADT)    类型是由什么组成?一个类型(type)指定两类信息:一个属性集和一个操作集. 所以您想定义一个新的数据类型.首先,您需要提供存储数据的方式,可能是通过设计一个结构.第二 ...

  5. Oracle 10 - 数据库表

    Oracle数据库表类型 1.堆表 2.索引组织表 3.索引clustered表 4.散列clustered表 5.有序散列clustered表 6.嵌套表 7.临时表 8.对象表 9.外部表 Ora ...

  6. 套题T4

    Problem 1 无聊的gcd(gcd.c/cpp/pas) 话说出题人不会被查水表吧. 简单的问题描述:从N个正整数里面取出K个数的最大公因数最大是多少.(请将答案乘上k之后输出哦,谢谢合作.) ...

  7. Spring3 报org.aopalliance.intercept.MethodInterceptor问题解决方法

    原文:Spring3 报org.aopalliance.intercept.MethodInterceptor问题解决方法 一 开发环境:JDK5+Spring3.0.5+Myeclipse6.6+T ...

  8. Android ActionBar标题和渐变背景

    需要在AndroidManifest.xml中设置 android:theme="@style/Theme.AppCompat" 如果提示找不到,请按下图设置: 至于如何引入的方法 ...

  9. QTP数据驱动之读取Excel数据

    这个代码的原理是把Excel的数据当做数据库里的数据一样处理,可以对Excel用select来检索需要的数据,然后把数据以键值对的形式保存到oDict里,方便在用例层来调用 Class oDataDi ...

  10. 23.allegro中自动布线[原创]

    1. --- 方法①:选择网络自动布线 -- --- 已经步好: --- 方法②: ---- ---- 布线: --- 方法③: -- ----