Transfer water

Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)

Total Submission(s): 3821    Accepted Submission(s): 1371
Problem Description
XiaoA lives in a village. Last year flood rained the village. So they decide to move the whole village to the mountain nearby this year. There is no spring in the mountain, so each household could
only dig a well or build a water line from other household. If the household decide to dig a well, the money for the well is the height of their house multiplies X dollar per meter. If the household decide to build a water line from other household, and if
the height of which supply water is not lower than the one which get water, the money of one water line is the Manhattan distance of the two households multiplies Y dollar per meter. Or if the height of which supply water is lower than the one which get water,
a water pump is needed except the water line. Z dollar should be paid for one water pump. In addition,therelation of the households must be considered. Some households may do not allow some other households build a water line from there house. Now given the
3‐dimensional position (a, b, c) of every household the c of which means height, can you calculate the minimal money the whole village need so that every household has water, or tell the leader if it can’t be done.


Input
Multiple cases.

First line of each case contains 4 integers n (1<=n<=1000), the number of the households, X (1<=X<=1000), Y (1<=Y<=1000), Z (1<=Z<=1000).


Each of the next n lines contains 3 integers a, b, c means the position of the i‐th households, none of them will exceeded 1000.


Then next n lines describe the relation between the households. The n+i+1‐th line describes the relation of the i‐th household. The line will begin with an integer k, and the next k integers are the household numbers that can build a water line from the i‐th
household.

If n=X=Y=Z=0, the input ends, and no output for that.



Output
One integer in one line for each case, the minimal money the whole village need so that every household has water. If the plan does not exist, print “poor XiaoA” in one line.




Sample Input
2 10 20 30
1 3 2
2 4 1
1 2
2 1 2
0 0 0 0
 
Sample Output
30
Hint
In 3‐dimensional space Manhattan distance of point A (x1, y1, z1) and B(x2, y2, z2) is |x2‐x1|+|y2‐y1|+|z2‐z1|.
题意:在山上有n户人家,给出他们的坐标(x,y,z)z是海拔;每户人家的水来源有地下水,或从其他人家引进来,如果打地下水每米X元,深度是海拔,如果从他家引水,有两种情况,一是供水人家海拔较高,费用是每米Y元,距离是曼哈顿距离,二是海拔较低,需要水泵,一个水泵需要额外花费Z元,问要是每家人都有水,至少花费是多少?
分析:水的最终来源肯定是地下水,所以至少有一家人是从地下获得的水,所以n户人家编号1到n,地下水编号n+1,地下水到每户建边,花费是L*Z,然后按照题目中的关系把相应的人家建边,费用为(Z)+L*Y;地下水就是根节点,运行一下最小树形图即可:
程序:
#include"string.h"
#include"stdio.h"
#include"math.h"
#include"queue"
#define eps 1e-10
#define M 1009
#define inf 100000000
using namespace std;
struct node
{
int x,y,z;
}p[M];
struct edge
{
int u,v;
int w;
}edge[M*M];
int pre[M],id[M],use[M],in[M];
int Fabs(int x)
{
return x>0?x:-x;
}
int mini_tree(int root,int n,int m)//分别是树根,节点数,边数,序号从1开始
{
int ans=0;
int i,u;
while(1)
{
for(i=1;i<=n;i++)
in[i]=inf;
for(i=1;i<=m;i++)
{
int u=edge[i].u;
int v=edge[i].v;
if(edge[i].w<in[v]&&u!=v)
{
in[v]=edge[i].w;
pre[v]=u;
}
}//找最小的入边
for(i=1;i<=n;i++)
{
if(i==root)continue;
ans+=in[i];//把边权加起来
if(in[i]==inf)//如果存在没有入弧的点则不存在最小树形图
return -1;
}
memset(id,-1,sizeof(id));
memset(use,-1,sizeof(use));
int cnt=0;
for(i=1;i<=n;i++)//枚举每个点,搜索找环
{
int v=i;
while(v!=root&&use[v]!=i&&id[v]==-1)
{
use[v]=i;
v=pre[v];
}
if(v!=root&&id[v]==-1)//当找到环的时候缩点编号
{
++cnt;
id[v]=cnt;
for(u=pre[v];u!=v;u=pre[u])
id[u]=cnt;
}
}
if(cnt==0)//如果没有环结束程序
break;
for(i=1;i<=n;i++)//把余下的不在环里的点编号
if(id[i]==-1)
id[i]=++cnt;
for(i=1;i<=m;i++)//建立新的图
{
int u=edge[i].u;
int v=edge[i].v;
edge[i].u=id[u];
edge[i].v=id[v];
if(edge[i].u!=edge[i].v)
edge[i].w-=in[v];
}
n=cnt;//更新节点数和根节点的编号
root=id[root];
}
return ans;
}
int main()
{
int n,X,Y,Z,i,j;
while(scanf("%d%d%d%d",&n,&X,&Y,&Z),n||X||Y||Z)
{
for(i=1;i<=n;i++)
scanf("%d%d%d",&p[i].x,&p[i].y,&p[i].z);
int m=0;
for(i=1;i<=n;i++)
{
int k;
scanf("%d",&k);
while(k--)
{
scanf("%d",&j);
if(i==j)continue;
m++;
edge[m].u=i;
edge[m].v=j;
if(p[j].z>p[i].z)
edge[m].w=Z+Y*(Fabs(p[i].x-p[j].x)+Fabs(p[i].y-p[j].y)+Fabs(p[i].z-p[j].z));
else
edge[m].w=Y*(Fabs(p[i].x-p[j].x)+Fabs(p[i].y-p[j].y)+Fabs(p[i].z-p[j].z));
}
}
for(i=1;i<=n;i++)
{
m++;
edge[m].u=n+1;
edge[m].v=i;
edge[m].w=p[i].z*X;
}
int ans=mini_tree(n+1,n+1,m);
printf("%d\n",ans);
}
return 0;
}

最小树形图(hdu4009)的更多相关文章

  1. HDU4009 Transfer water —— 最小树形图 + 不定根 + 超级点

    题目链接:https://vjudge.net/problem/HDU-4009 Transfer water Time Limit: 5000/3000 MS (Java/Others)    Me ...

  2. hdu4009最小树形图板子题

    /*调了一下午的最小树形图,昨天刚刚看懂模板..最小树形图,就是有向图的最小生成树,很神奇==*/ #include<iostream> #include<cstring> # ...

  3. hdu4009最小树形图

    多建一个根,连到每一个点,然后花费是建水井的钱 然后跑一边最小树形图即可,这题必定有解,因为可以从根开始到每一点,可以不用判无解的情况 #include<map> #include< ...

  4. hdu4009 Transfer water 最小树形图

    每一户人家水的来源有两种打井和从别家接水,每户人家都可能向外输送水. 打井和接水两种的付出代价都接边.设一个超级源点,每家每户打井的代价就是从该点(0)到该户人家(1~n)的边的权值.接水有两种可能, ...

  5. HDU4009 Transfer water 【最小树形图】

    Transfer water Time Limit: 5000/3000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) T ...

  6. POJ 3164 Command Network 最小树形图模板

    最小树形图求的是有向图的最小生成树,跟无向图求最小生成树有很大的区别. 步骤大致如下: 1.求除了根节点以外每个节点的最小入边,记录前驱 2.判断除了根节点,是否每个节点都有入边,如果存在没有入边的点 ...

  7. 树的问题小结(最小生成树、次小生成树、最小树形图、LCA、最小支配集、最小点覆盖、最大独立集)

    树的定义:连通无回路的无向图是一棵树. 有关树的问题: 1.最小生成树. 2.次小生成树. 3.有向图的最小树形图. 4.LCA(树上两点的最近公共祖先). 5.树的最小支配集.最小点覆盖.最大独立集 ...

  8. hdu2121 Ice_cream’s world II 最小树形图(难)

    这题比HDU4009要难一些.做了4009,大概知道了最小树形图的解法.拿到这题,最直接的想法是暴力.n个点试过去,每个都拿来做一次根.最后WA了,估计是超时了.(很多题都是TLE说成WA,用了G++ ...

  9. bzoj4349: 最小树形图

    最小树形图模板题…… 这种\(O(nm)\)的东西真的能考到么…… #include <bits/stdc++.h> #define N 60 #define INF 1000000000 ...

随机推荐

  1. jquery javascript 回到顶部功能

    今天搞了一个回到顶部的JS JQ功能 (function($){ $.fn.survey=function(options){ var defaults={width:"298", ...

  2. 看了这个才发现jQuery源代码不是那么晦涩

    很多人觉得jquery.ext等一些开源js源代码 十分的晦涩,读不懂,遇到问题需要调试也很费劲.其实我个人感觉主要是有几个方面的原因: 1.对一些js不常用的语法.操作符不熟悉 2.某个functi ...

  3. selenium测试(Java)-- 隐式等待(十)

    隐式等待相当于设置全局的等待,在定位元素时,对所有元素设置超时时间. 隐式等待使得WebDriver在查找一个Element或者Element数组时,每隔一段特定的时间就会轮询一次DOM,如果Elem ...

  4. qt 编译的文件没有生效

    /******************************************************************* * qt 编译的文件没有生效 * qt交叉编译时,生成的可执行 ...

  5. am335x i2c分析

    /***************************************************************************** * am335x i2c分析 * i2c驱 ...

  6. imx6 i2c分析

    本文主要分析: 1. i2c设备注册 2. i2c驱动注册 3. 上层调用过程参考: http://www.cnblogs.com/helloworldtoyou/p/5126618.html 1. ...

  7. C++ 模板类友元之输出流操作符重载

    几个关键点: 需要前置声明!--奇怪的是别人告诉我也可以不需要,但我这里不行! 友元函数的函数名后面的<>,必须要有. #include <stdio.h> #include ...

  8. ARP协议相关介绍

    什么是ARP协议? ARP,即地址解析协议,实现通过IP地址得知其物理地址.在TCP/IP网络环境下,每个主机都分配了一个32位的IP地址,这种互联网地址是在网际范围标识主机的一种逻辑地址.为了让报文 ...

  9. VC++ 打开文件或文件夹对话框的实现方法

    实际工作开发中,由于各种应用,我们需要调用系统的打开文件对话框或者打开文件夹对话框,或两者兼有.特总结了常用的实现方法,仅供开发参考. 1. 打开文件对话框 常用的方法是使用系统的CFileDialo ...

  10. Spring------SpringBoot中注解

    转载: http://www.tuicool.com/articles/bQnMra