【bzoj3774】最优选择 网络流最小割
题目描述
小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的。一个点如果被选择了,那么可以得到Bij的回报,现在请你帮小N选一个最优的方案,使得回报-代价尽可能大。
输入
第一行两个正整数N,M表示方格图的长与宽。
接下来N行每行M个整数Aij表示控制的代价。
接下来N行每行M个整数Bij表示选择的回报。
输出
一个整数,表示最大的回报-代价(如果一个都不控制那么就是0)。
样例输入
3 3
1 100 100
100 1 100
1 100 100
2 0 0
5 2 0
2 0 0
样例输出
8
题解
网络流最小割
先求出所有价值的总和,然后对于每个点:要么付出选择代价,要么放弃价值,要么相邻点付出选择代价。
考虑构建a-b-inf-a'的结构。
每个点拆成两个(以下称1和2),中间连容量为b的边,表示价值。将原图黑白染色,对于黑点:S向1连边,容量为a;对于白点:2向T连边,容量为a,表示付出选择代价。
对于黑点:该点的2向相邻点(显然是白点)的2连边,容量为inf,这样就有了a-b-inf-a'的结构;对于白点:相邻点的1向该点的1连边,容量为inf,这样就有了a'-inf-b-a的结构。
建出来的图大概长这样(B为黑点,W为白点):
总收益减去最小割即为答案。
#include <queue>
#include <cstdio>
#include <cstring>
#define N 5010
#define M 100010
#define inf 1 << 30
#define pos(h , i , j) ((h - 1) * n * m + (i - 1) * m + j)
using namespace std;
queue<int> q;
int head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N];
inline void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , m , i , j , x , ans = 0;
scanf("%d%d" , &n , &m) , s = 0 , t = 2 * n * m + 1;
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= m ; j ++ )
{
scanf("%d" , &x);
if((i ^ j) & 1)
{
add(s , pos(1 , i , j) , x);
if(i > 1) add(pos(1 , i , j) , pos(1 , i - 1 , j) , inf) , add(pos(2 , i , j) , pos(2 , i - 1 , j) , inf);
if(i < n) add(pos(1 , i , j) , pos(1 , i + 1 , j) , inf) , add(pos(2 , i , j) , pos(2 , i + 1 , j) , inf);
if(j > 1) add(pos(1 , i , j) , pos(1 , i , j - 1) , inf) , add(pos(2 , i , j) , pos(2 , i , j - 1) , inf);
if(j < m) add(pos(1 , i , j) , pos(1 , i , j + 1) , inf) , add(pos(2 , i , j) , pos(2 , i , j + 1) , inf);
}
else add(pos(2 , i , j) , t , x);
}
}
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= m ; j ++ )
scanf("%d" , &x) , add(pos(1 , i , j) , pos(2 , i , j) , x) , ans += x;
while(bfs()) ans -= dinic(s , inf);
printf("%d\n" , ans);
return 0;
}
【bzoj3774】最优选择 网络流最小割的更多相关文章
- [BZOJ 3774] 最优选择 【最小割】
题目链接:BZOJ - 3774 题目分析 此题与“文理分科”那道题目有些类似.都是使用最小割来求解,先加上可能获得的权值,在减掉必须舍弃的权值(最小割). 文理分科是规定每个人和 S 连就是选文,和 ...
- 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割
题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...
- 【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割
题目描述 一个n*n*n的立方体,每个位置为0或1.有些位置已经确定,还有一些需要待填入.问最后可以得到的 相邻且填入的数不同的点对 的数目最大. 输入 第一行包含一个数N,表示魔方的大小. 接下来 ...
- 【bzoj4177】Mike的农场 网络流最小割
题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i] ...
- 【bzoj3144】[Hnoi2013]切糕 网络流最小割
题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- 【bzoj3894】文理分科 网络流最小割
原文地址:http://www.cnblogs.com/GXZlegend 题目描述 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用 ...
- 【bzoj2132】圈地计划 网络流最小割
题目描述 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一块矩形的区域,可以纵横划 ...
- 【bzoj2127】happiness 网络流最小割
题目描述 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文 ...
- 【bzoj2521】[Shoi2010]最小生成树 网络流最小割
题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的 ...
随机推荐
- DSP5509项目之用FFT识别钢琴音调(5)之开始傅里叶变换
1. 首先电脑上下载一个音频模拟的软件 2. 研究下钢琴的声音范围27HZ到4000HZ,那么采样频率需要是信号的两倍频率以上,所以建议采样频率是16KHZ.先看一下采集到的数据,如下是空载时候采集到 ...
- Hibernate各种主键生成策略与配置详解(转)
原文链接:http://www.cnblogs.com/hoobey/p/5508992.html 1.assigned 主键由外部程序负责生成,在 save() 之前必须指定一个.Hibernate ...
- Sublime Text 3安装完美的Vim支持,ActualVim/NeoVim
很多IDE和编辑器都有Vim插件用于支持Vim模式,但大多数都有些问题,拿我一直用的Idea来说,它的vim在ctrl+v后,选择多行的行前插入,如果这几行中有空行,它不会把空格算在内,所以最终是会少 ...
- 动态权限<一>基本介绍
android 6.0以上为了保护用户的隐私,和以往被人诟病的权限机制,确立了新的权限机制.从 Android 6.0(API 级别 23)开始,用户开始在应用运行时向其授予权限,而不是在应用安装时授 ...
- SQL注入--显注和盲注中过滤逗号绕过
SQL注入逗号绕过 1.联合查询显注绕过逗号 在联合查询时使用 UNION SELECT 1,2,3,4,5,6,7..n 这样的格式爆显示位,语句中包含了多个逗号,如果有WAF拦截了逗号时,我们的联 ...
- Appium+python的单元测试框架unittest(3)——discover(转)
(原文:https://www.cnblogs.com/fancy0158/p/10047906.html) TestSuite套件可以添加很多个用例后运行,但是每个用例都需要调用addTest()函 ...
- Phaser3游戏三角学应用--一只跟随屏幕点击位置游动的鱼
fish fish 资源图: fish-136x80.png undersea-bg.png 代码 var config = { type: Phaser.AUTO, parent: 'iFiero' ...
- Scala基础知识笔记1
上一篇文章介绍了如何下载scala, 因为在官网上点击下载按钮无法下载, 下面介绍scala的基础语法: 1 scala和java的关系 Scala是基于jvm的一门编程语言,Scala的代码最终会经 ...
- Vue 项目在其他电脑 npm run dev 运行报错的解决方法
一个 Vue 项目从一台电脑上传到 github 上之后,再另外一台电脑上 git clone .并使用 npm run dev 或 npm run start 发生以下报错的解决方法. 报错原因 ...
- Linux内核学习笔记(5)-- 进程调度概述
进程调度程序是多任务操作系统的基础,它是确保进程能有效工作的一个内核子系统,负责决定哪个进程投入运行.何时运行以及运行多长时间.只有通过进程调度程序的合理调度,系统资源才能够最大限度地发挥作用,多进程 ...