【bzoj3774】最优选择 网络流最小割
题目描述
小N手上有一个N*M的方格图,控制某一个点要付出Aij的代价,然后某个点如果被控制了,或者他周围的所有点(上下左右)都被控制了,那么他就算是被选择了的。一个点如果被选择了,那么可以得到Bij的回报,现在请你帮小N选一个最优的方案,使得回报-代价尽可能大。
输入
第一行两个正整数N,M表示方格图的长与宽。
接下来N行每行M个整数Aij表示控制的代价。
接下来N行每行M个整数Bij表示选择的回报。
输出
一个整数,表示最大的回报-代价(如果一个都不控制那么就是0)。
样例输入
3 3
1 100 100
100 1 100
1 100 100
2 0 0
5 2 0
2 0 0
样例输出
8
题解
网络流最小割
先求出所有价值的总和,然后对于每个点:要么付出选择代价,要么放弃价值,要么相邻点付出选择代价。
考虑构建a-b-inf-a'的结构。
每个点拆成两个(以下称1和2),中间连容量为b的边,表示价值。将原图黑白染色,对于黑点:S向1连边,容量为a;对于白点:2向T连边,容量为a,表示付出选择代价。
对于黑点:该点的2向相邻点(显然是白点)的2连边,容量为inf,这样就有了a-b-inf-a'的结构;对于白点:相邻点的1向该点的1连边,容量为inf,这样就有了a'-inf-b-a的结构。
建出来的图大概长这样(B为黑点,W为白点):

总收益减去最小割即为答案。
#include <queue>
#include <cstdio>
#include <cstring>
#define N 5010
#define M 100010
#define inf 1 << 30
#define pos(h , i , j) ((h - 1) * n * m + (i - 1) * m + j)
using namespace std;
queue<int> q;
int head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N];
inline void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , m , i , j , x , ans = 0;
scanf("%d%d" , &n , &m) , s = 0 , t = 2 * n * m + 1;
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= m ; j ++ )
{
scanf("%d" , &x);
if((i ^ j) & 1)
{
add(s , pos(1 , i , j) , x);
if(i > 1) add(pos(1 , i , j) , pos(1 , i - 1 , j) , inf) , add(pos(2 , i , j) , pos(2 , i - 1 , j) , inf);
if(i < n) add(pos(1 , i , j) , pos(1 , i + 1 , j) , inf) , add(pos(2 , i , j) , pos(2 , i + 1 , j) , inf);
if(j > 1) add(pos(1 , i , j) , pos(1 , i , j - 1) , inf) , add(pos(2 , i , j) , pos(2 , i , j - 1) , inf);
if(j < m) add(pos(1 , i , j) , pos(1 , i , j + 1) , inf) , add(pos(2 , i , j) , pos(2 , i , j + 1) , inf);
}
else add(pos(2 , i , j) , t , x);
}
}
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= m ; j ++ )
scanf("%d" , &x) , add(pos(1 , i , j) , pos(2 , i , j) , x) , ans += x;
while(bfs()) ans -= dinic(s , inf);
printf("%d\n" , ans);
return 0;
}
【bzoj3774】最优选择 网络流最小割的更多相关文章
- [BZOJ 3774] 最优选择 【最小割】
题目链接:BZOJ - 3774 题目分析 此题与“文理分科”那道题目有些类似.都是使用最小割来求解,先加上可能获得的权值,在减掉必须舍弃的权值(最小割). 文理分科是规定每个人和 S 连就是选文,和 ...
- 【bzoj1143】[CTSC2008]祭祀river Floyd+网络流最小割
题目描述 在遥远的东方,有一个神秘的民族,自称Y族.他们世代居住在水面上,奉龙王为神.每逢重大庆典, Y族都会在水面上举办盛大的祭祀活动.我们可以把Y族居住地水系看成一个由岔口和河道组成的网络.每条河 ...
- 【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割
题目描述 一个n*n*n的立方体,每个位置为0或1.有些位置已经确定,还有一些需要待填入.问最后可以得到的 相邻且填入的数不同的点对 的数目最大. 输入 第一行包含一个数N,表示魔方的大小. 接下来 ...
- 【bzoj4177】Mike的农场 网络流最小割
题目描述 Mike有一个农场,这个农场n个牲畜围栏,现在他想在每个牲畜围栏中养一只动物,每只动物可以是牛或羊,并且每个牲畜围栏中的饲养条件都不同,其中第i个牲畜围栏中的动物长大后,每只牛可以卖a[i] ...
- 【bzoj3144】[Hnoi2013]切糕 网络流最小割
题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- 【bzoj3894】文理分科 网络流最小割
原文地址:http://www.cnblogs.com/GXZlegend 题目描述 文理分科是一件很纠结的事情!(虽然看到这个题目的人肯定都没有纠结过) 小P所在的班级要进行文理分科.他的班级可以用 ...
- 【bzoj2132】圈地计划 网络流最小割
题目描述 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一块矩形的区域,可以纵横划 ...
- 【bzoj2127】happiness 网络流最小割
题目描述 高一一班的座位表是个n*m的矩阵,经过一个学期的相处,每个同学和前后左右相邻的同学互相成为了好朋友.这学期要分文理科了,每个同学对于选择文科与理科有着自己的喜悦值,而一对好朋友如果能同时选文 ...
- 【bzoj2521】[Shoi2010]最小生成树 网络流最小割
题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的 ...
随机推荐
- 20145234黄斐《Java程序设计》实验二—Java面向对象程序设计
1.提交最后三个测试用例都通过的截图,截图上要有画图加水印,输入自己的学号. 2. 以 TDD的方式研究学习StringBuffer 3.对设计模式示例进行扩充,体会OCP原则和DIP原则的应用,初步 ...
- dedecms 后台网站 标题设置
打开文件夹,找到dede/templets/index2.htm,修改第6行就行了
- virsh常用维护命令
virsh常用命令 一些常用命令参数 [root@kvm-server ~]# virsh --help #查看命令帮忙 [ro ...
- iOS 的音频播放
一.Audio Toolbox 1.使用代码 #import <AudioToolbox/AudioToolbox.h> AudioServicesPlaySystemSound(1106 ...
- Unity CombineTexture
public Texture2D CombineTexture(Texture2D background, Texture2D top) { int width = background.width; ...
- Git生成SSH密钥
git config --global user.name "yangjianliang"配置用户名 git config --global user.email "52 ...
- loadrunner12安装教程
全套五个文件: 独立安装包,插件包,LR安装包,语言包,版本说明书 loadrunner 12安装教程 1.首先下载Loadrunner12安装包.下载下来将会有四个安装包. HP_LoadRunne ...
- linux部署MantisBT(一)部署apache
一.部署apache 1.下载apache安装包及依赖包 http://httpd.apache.org/download.cgi#apache24(apache2)http://apr.apache ...
- Jenkins Tomcat安装设置
Jenkins Tomcat安装设置 以下为必须满足Jenkins Tomcat设置的先决条件. 第1步:验证安装Java 要验证Java安装,打开控制台并执行以下Java命令. OS 任务 命令 W ...
- Vue学习计划基础笔记(六) - 组件基础
组件基础 目标: 掌握组件的构建方式 掌握如何复用组件.父子组件如何传值.如何向父组件发送消息 掌握如何通过插槽分发内容 了解解析dom模板时的注意事项 了解动态组件 组件 组件理解起来大概上就和ph ...