HDU 6035 Colorful Tree(dfs)
题意:一棵有n个点的树,树上每个点都有颜色c[i],定义每条路径的值为这条路径上经过的不同颜色数量和。求所有路径的值的和。
可以把问题转化为对每种颜色有多少条不同的路径至少经过这种颜色的点,然后加和。求有多少条路径经过可以转换为总路径数-没有经过的路径数,只要求出没有经过的路径数就好了。
对于每一个相同颜色的点,它们将树割成一些个联通块,显然这些联通块内部之间的路径不会经过这种颜色。
于是问题转化为求点划分的联通块大小。
用类似于虚树的dfs办法,每次维护树上最左边的一段链,然后用栈进行数据的更新即可。
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FDR(i,a,n) for(int i=a; i>=n; --i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
inline int Scan() {
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Edge{int p, next;}edge[N<<];
int head[N], cnt=;
int node[N], siz[N], num[N], tmp, sum[N], mark;
int st[N<<], f[N], col[N], pos;
LL ans=; void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;}
void dfs(int x, int fa){
siz[x]=;
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
dfs(v,x); siz[x]+=siz[v];
}
}
void sol(int x, int fa){
num[x]=siz[x]; --sum[node[x]];
if (node[x]==node[fa]) --num[x];
if (col[node[x]]) tmp=st[col[node[x]]], --num[tmp];
if (fa) {
if (col[node[fa]]) tmp=st[col[node[fa]]], num[tmp]-=num[x];
f[++pos]=col[node[fa]]; col[node[fa]]=pos; st[pos]=x;
}
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
sol(v,x);
}
if (fa) {
ans+=(LL)num[x]*(num[x]-)/; sum[node[fa]]-=num[x];
col[node[fa]]=f[col[node[fa]]];
}
}
void init(){
mem(head,); mem(siz,); mem(num,); mem(sum,); mem(col,); mem(f,);
ans=; mark=; cnt=; pos=;
}
int main ()
{
int cas=, n, u, v;
while (~scanf("%d",&n)) {
init();
FOR(i,,n) scanf("%d",node+i), sum[node[i]]=n;
FOR(i,,n) if (sum[i]) ++mark;
FOR(i,,n-) scanf("%d%d",&u,&v), add_edge(u,v), add_edge(v,u);
dfs(,);
sol(,);
FOR(i,,n) ans+=(LL)sum[i]*(sum[i]-)/;
ans=(LL)mark*n*(n-)/-ans;
printf("Case #%d: %lld\n",++cas,ans);
}
return ;
}
HDU 6035 Colorful Tree(dfs)的更多相关文章
- HDU 6035 - Colorful Tree | 2017 Multi-University Training Contest 1
/* HDU 6035 - Colorful Tree [ DFS,分块 ] 题意: n个节点的树,每个节点有一种颜色(1~n),一条路径的权值是这条路上不同的颜色的数量,问所有路径(n*(n-1)/ ...
- 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】
Colorful Tree Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)T ...
- 2017ACM暑期多校联合训练 - Team 1 1003 HDU 6035 Colorful Tree (dfs)
题目链接 Problem Description There is a tree with n nodes, each of which has a type of color represented ...
- HDU 6035 Colorful Tree(补集思想+树形DP)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6035 [题目大意] 给出一颗树,一条路径的价值为其上点权的种类数,求路径总价值 [题解] 单独考虑 ...
- HDU 6035 Colorful Tree (树形DP)
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6035 [题目大意] 给出一颗树,一条路径的价值为其上点权的种类数,求路径总价值 [题解] 我们计算 ...
- hdu 6035:Colorful Tree (2017 多校第一场 1003) 【树形dp】
题目链接 单独考虑每一种颜色,答案就是对于每种颜色至少经过一次这种的路径条数之和.反过来思考只需要求有多少条路径没有经过这种颜色即可. 具体实现过程比较复杂,很神奇的一个树形dp,下面给出一个含较详细 ...
- hdu 6035 Colorful Tree(虚树)
考虑到树上操作:首先题目要我们求每条路径上出现不同颜色的数量,并把所有加起来得到答案:我们知道俩俩点之间会形成一条路径,所以我们可以知道每个样例的总的路径的数目为:n*(n-1)/2: 这样单单的求, ...
- Hdu 5379 Mahjong tree (dfs + 组合数)
题目链接: Hdu 5379 Mahjong tree 题目描述: 给出一个有n个节点的树,以节点1为根节点.问在满足兄弟节点连续 以及 子树包含节点连续 的条件下,有多少种编号方案给树上的n个点编号 ...
- 【hdu6035】 Colorful Tree dfs序
题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题目大意:给你一棵树,树上每个节点都有一个颜色. 现在定义两点间的距离为两点最短路径上颜色集合 ...
随机推荐
- 实现Linux下dc的功能,计算后缀表达式的值
提交测试截图和码云练习项目链接,实现Linux下dc的功能,计算后缀表达式的值 -将运算符写在两个操作数之后的表达式称为"后缀表达式",如上面的中缀表达式可转换为后缀表达式1 2 ...
- 同步备份工具之 rsync
1.常用同步方法 SCP. NFS. SFTP. http. samba. rsync. drbd(基于文件系统同步,效率高) 2.rsync 介绍 rsync,英文全称是 remote synchr ...
- [NOIp2018]铺设道路 贪心
LG传送门 考场上写的\(O(nlogn)\)做法,具体思想是把深度从低到高排个序,开一个标记数组,每次加入的时候标记当前位置并判断:如果当前加入的位置两边都被标记过,则下次的贡献-1,若两边都没有被 ...
- centos7下python3与python2共存并且开启py3虚拟环境
因为下载视频需要用到python3环境,今天在我的win上安装下载工具死活安装不上去,在大盘鸡上一下就安装成功了...可能在win上不兼容吧...无奈只能在大盘鸡上进行折腾了,顺便几个笔记 由于大盘鸡 ...
- 【转】glumer Appium + Python环境搭建(移动端自动化)
最近整理了一下自动化的东西,好久没搭建环境又踩了不少坑,appium的环境搭建比较繁琐,好多同行估计都在环境上被卡死了.分享一下~~ 一.安装JDK,配置JDK环境 百度搜索下载就行,这里分享一 ...
- 学习笔记之shell命令
linux shell命令学习笔记:~这里只是对自己一些常用但是不熟悉的的命令进行记录 -------------------------------------------------------- ...
- Egret入门(二)--windows下环境搭建
准备材料 安装Node.js TypeScript编辑器 HTTP服务器(可选) Chorme(可选) Egret 安装Node.js 打开www.nodejs.org 下载安装(全部next,全默认 ...
- 《零基础学HTML5+CSS3(全彩版)》读书笔记
2019年1月31日星期四 1点 <零基础学HTML5+CSS3(全彩版)>开始全面学习 前提: 11月20日开始学Python,可能因为太累了,也可能遇到了瓶颈,进入了一个迷茫期,1月6 ...
- 爬虫2.3-scrapy框架-post、shell、验证码
目录 scrapy框架-post请求和shell 1. post请求 2. scrapy shell 3. 验证码识别 scrapy框架-post请求和shell 1. post请求 scrapy框架 ...
- 基于zookeeper+mesos+marathon的docker集群管理平台
参考文档: mesos:http://mesos.apache.org/ mesosphere社区版:https://github.com/mesosphere/open-docs mesospher ...