题意:一棵有n个点的树,树上每个点都有颜色c[i],定义每条路径的值为这条路径上经过的不同颜色数量和。求所有路径的值的和。

可以把问题转化为对每种颜色有多少条不同的路径至少经过这种颜色的点,然后加和。求有多少条路径经过可以转换为总路径数-没有经过的路径数,只要求出没有经过的路径数就好了。

对于每一个相同颜色的点,它们将树割成一些个联通块,显然这些联通块内部之间的路径不会经过这种颜色。

于是问题转化为求点划分的联通块大小。

用类似于虚树的dfs办法,每次维护树上最左边的一段链,然后用栈进行数据的更新即可。

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FDR(i,a,n) for(int i=a; i>=n; --i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
inline int Scan() {
int x=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-; ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
}
inline void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Edge{int p, next;}edge[N<<];
int head[N], cnt=;
int node[N], siz[N], num[N], tmp, sum[N], mark;
int st[N<<], f[N], col[N], pos;
LL ans=; void add_edge(int u, int v){edge[cnt].p=v; edge[cnt].next=head[u]; head[u]=cnt++;}
void dfs(int x, int fa){
siz[x]=;
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
dfs(v,x); siz[x]+=siz[v];
}
}
void sol(int x, int fa){
num[x]=siz[x]; --sum[node[x]];
if (node[x]==node[fa]) --num[x];
if (col[node[x]]) tmp=st[col[node[x]]], --num[tmp];
if (fa) {
if (col[node[fa]]) tmp=st[col[node[fa]]], num[tmp]-=num[x];
f[++pos]=col[node[fa]]; col[node[fa]]=pos; st[pos]=x;
}
for (int i=head[x]; i; i=edge[i].next) {
int v=edge[i].p;
if (v==fa) continue;
sol(v,x);
}
if (fa) {
ans+=(LL)num[x]*(num[x]-)/; sum[node[fa]]-=num[x];
col[node[fa]]=f[col[node[fa]]];
}
}
void init(){
mem(head,); mem(siz,); mem(num,); mem(sum,); mem(col,); mem(f,);
ans=; mark=; cnt=; pos=;
}
int main ()
{
int cas=, n, u, v;
while (~scanf("%d",&n)) {
init();
FOR(i,,n) scanf("%d",node+i), sum[node[i]]=n;
FOR(i,,n) if (sum[i]) ++mark;
FOR(i,,n-) scanf("%d%d",&u,&v), add_edge(u,v), add_edge(v,u);
dfs(,);
sol(,);
FOR(i,,n) ans+=(LL)sum[i]*(sum[i]-)/;
ans=(LL)mark*n*(n-)/-ans;
printf("Case #%d: %lld\n",++cas,ans);
}
return ;
}

HDU 6035 Colorful Tree(dfs)的更多相关文章

  1. HDU 6035 - Colorful Tree | 2017 Multi-University Training Contest 1

    /* HDU 6035 - Colorful Tree [ DFS,分块 ] 题意: n个节点的树,每个节点有一种颜色(1~n),一条路径的权值是这条路上不同的颜色的数量,问所有路径(n*(n-1)/ ...

  2. 2017 Multi-University Training Contest - Team 1 1003&&HDU 6035 Colorful Tree【树形dp】

    Colorful Tree Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

  3. 2017ACM暑期多校联合训练 - Team 1 1003 HDU 6035 Colorful Tree (dfs)

    题目链接 Problem Description There is a tree with n nodes, each of which has a type of color represented ...

  4. HDU 6035 Colorful Tree(补集思想+树形DP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6035 [题目大意] 给出一颗树,一条路径的价值为其上点权的种类数,求路径总价值 [题解] 单独考虑 ...

  5. HDU 6035 Colorful Tree (树形DP)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=6035 [题目大意] 给出一颗树,一条路径的价值为其上点权的种类数,求路径总价值 [题解] 我们计算 ...

  6. hdu 6035:Colorful Tree (2017 多校第一场 1003) 【树形dp】

    题目链接 单独考虑每一种颜色,答案就是对于每种颜色至少经过一次这种的路径条数之和.反过来思考只需要求有多少条路径没有经过这种颜色即可. 具体实现过程比较复杂,很神奇的一个树形dp,下面给出一个含较详细 ...

  7. hdu 6035 Colorful Tree(虚树)

    考虑到树上操作:首先题目要我们求每条路径上出现不同颜色的数量,并把所有加起来得到答案:我们知道俩俩点之间会形成一条路径,所以我们可以知道每个样例的总的路径的数目为:n*(n-1)/2: 这样单单的求, ...

  8. Hdu 5379 Mahjong tree (dfs + 组合数)

    题目链接: Hdu 5379 Mahjong tree 题目描述: 给出一个有n个节点的树,以节点1为根节点.问在满足兄弟节点连续 以及 子树包含节点连续 的条件下,有多少种编号方案给树上的n个点编号 ...

  9. 【hdu6035】 Colorful Tree dfs序

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题目大意:给你一棵树,树上每个节点都有一个颜色. 现在定义两点间的距离为两点最短路径上颜色集合 ...

随机推荐

  1. KVM虚拟机无法启动

    一.启动虚拟机报错: [root@KVM ~]# virsh start node-mssql-test01 error: Failed to start domain node-mssql-test ...

  2. [Vani有约会]雨天的尾巴 线段树合并

    [Vani有约会]雨天的尾巴 LG传送门 线段树合并入门好题. 先别急着上线段树合并,考虑一下这题的暴力.一看就是树上差分,对于每一个节点统计每种救济粮的数量,再一遍dfs把差分的结果统计成答案.如果 ...

  3. Scala中==,eq与equals的区别

    根据官方API的定义: final def ==(arg0: Any): Boolean The expression x == that is equivalent to if (x eq null ...

  4. python全栈开发- 前⽅⾼能-迭代器

    python_day_12 今日主要内容 1, 函数名的应用,第一类对象 函数名可以像变量一样进行使用 1.赋值 2.作为list元素 3.作为参数 4.作为返回值 2, 闭包 内部函数访问外部函数的 ...

  5. linux菜鸟笔记

    linux目录的子目录复制 cp -r 要复制的目录+新的目录 cp -r a test 意思就是将a的子目录及文件复制到新的目录test下面 zt@ubuntu:~/Desktop$ mkdir - ...

  6. perf + 火焰图用法 小结

    要对新服务做性能测试,分析代码热点,初识perf,做下总结 perf + 火焰图用法 perf简介 Perf (Performance Event), Linux 系统原生提供的性能分析工具, 会返回 ...

  7. 关于scrum敏捷测试

    关于scrum的一些定义 敏捷软件开发方法是一种把新增功能通过较小的循环逐步迭代添加到项目中(的项目管理方法),工作是由自我组织的团队以高效合作的方式拥抱和适应变化来保证客户需求被真正满足的方式来完成 ...

  8. Unity学习笔记(1)

    transform: transform是GameObject的一个默认的组件,其包含着该对象的几种属性,坐标(Position)以及旋转角度(Rotation)和尺寸(Scale). transfo ...

  9. Codeforces 552 E. Two Teams

    E. Two Teams time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  10. Scrum7

    冲刺阶段的总结 一.各个成员今日完成的任务 组员 任务分工 贡献 林泽宇 团队分工.撰写博客.修改完善需求规格说明书.整理代码规范 李涵 后端架构设计 尹海川 logo设计修改.数据库数据 郏敏杰 课 ...