Java Redis的Pipeline管道,批量操作,节省大量网络往返时间 & Redis批量读写(hmset&hgetall) 使用Pipeline
一般情况下,大家使用redis去put/get都是先拿到一个jedis实例,然后操作,然后释放连接;这种模式是
请求-响应,请求-响应
这种模式,下一次请求必须得等第一次请求响应回来之后才可以,因为redis是单线程的,按部就班,一步一步来。
而pipeline管道改变了这种请求模式,客户端可以一次发送多个命令,无须等待服务器的返回,
请求,请求,请求,响应,响应,响应
这种模式
这就大大减少了影响性能的关键因素-网络往返时间
下面就上面两种模式以及JDK的map三者做一个性能比较
- package redis;
- import java.util.concurrent.BlockingQueue;
- import java.util.concurrent.LinkedBlockingQueue;
- import redis.clients.jedis.ShardedJedis;
- import redis.clients.jedis.ShardedJedisPipeline;
- /**
- * @Type ShardRedisDemo.java
- * @Desc
- * @author chiwei
- * @date 2016年6月13日 下午3:24:25
- * @version
- */
- public class ShardRedisDemo {
- public static void main(String[] args) throws InterruptedException {
- ShardRedisClient src = new ShardRedisClient();
- src.setServers("redis://172.23.26.135:7379");
- src.init();
- int count = 10000;
- ShardedJedis sj = src.getResource();
- long begin = System.currentTimeMillis();
- for (int i = 0; i < count; i++) {
- sj.set("a" + i, "v" + i);
- }
- sj.close();
- System.out.println(System.currentTimeMillis() - begin);
- sj = src.getResource();
- ShardedJedisPipeline p = sj.pipelined();
- begin = System.currentTimeMillis();
- for (int i = 0; i < count; i++) {
- p.set("ap" + i, "vp" + i);
- }
- p.sync();
- sj.close();
- System.out.println(System.currentTimeMillis() - begin);
- BlockingQueue<String> logQueue = new LinkedBlockingQueue<String>();
- begin = System.currentTimeMillis();
- for (int i = 0; i < count; i++) {
- logQueue.put("i=" + i);
- }
- System.out.println(System.currentTimeMillis() - begin);
- }
- }
- /**
- * Revision history
- * -------------------------------------------------------------------------
- *
- * Date Author Note
- * -------------------------------------------------------------------------
- * 2016年6月13日 chiwei create
- */
结果如下:
45027
116
11
大家看相对时间就行了,我测试时是经过VPN连的redis,由此结果可见pipeline的性能惊人的高。
但是pipeline适合于什么样的场景使用呢?
有些系统可能对可靠性要求很高,每次操作都需要立马知道这次操作是否成功,是否数据已经写进redis了,那这种场景就不适合。
还有的系统,可能是批量的将数据写入redis,允许一定比例的写入失败,那么这种场景就可以使用了,比如10000条一下进入redis,可能失败了2条无所谓,后期有补偿机制就行了,比如短信群发这种场景,如果一下群发10000条,按照第一种模式去实现,那这个请求过来,要很久才能给客户端响应,这个延迟就太长了,如果客户端请求设置了超时时间5秒,那肯定就抛出异常了,而且本身群发短信要求实时性也没那么高,这时候用pipeline最好了。
=======================================================================================================================
一般情况下,Redis Client端发出一个请求后,通常会阻塞并等待Redis服务端处理,Redis服务端处理完后请求命令后会将结果通过响应报文返回给Client。
这有点类似于HBase的Scan,通常是Client端获取每一条记录都是一次RPC调用服务端。
在Redis中,有没有类似HBase Scanner Caching的东西呢,一次请求,返回多条记录呢?
有,这就是Pipline。官方介绍 http://redis.io/topics/pipelining
通过pipeline方式当有大批量的操作时候,我们可以节省很多原来浪费在网络延迟的时间,需要注意到是用pipeline方式打包命令发送,redis必须在处理完所有命令前先缓存起所有命令的处理结果。打包的命令越多,缓存消耗内存也越多。所以并不是打包的命令越多越好。
使用Pipeline在对Redis批量读写的时候,性能上有非常大的提升。
使用Java测试了一下:
- package com.lxw1234.redis;
- import java.util.HashMap;
- import java.util.Map;
- import java.util.Set;
- import redis.clients.jedis.Jedis;
- import redis.clients.jedis.Pipeline;
- import redis.clients.jedis.Response;
- public class Test {
- public static void main(String[] args) throws Exception {
- Jedis redis = new Jedis("127.0.0.1", 6379, 400000);
- Map<String,String> data = new HashMap<String,String>();
- redis.select(8);
- redis.flushDB();
- //hmset
- long start = System.currentTimeMillis();
- //直接hmset
- for (int i=0;i<10000;i++) {
- data.clear();
- data.put("k_" + i, "v_" + i);
- redis.hmset("key_" + i, data);
- }
- long end = System.currentTimeMillis();
- System.out.println("dbsize:[" + redis.dbSize() + "] .. ");
- System.out.println("hmset without pipeline used [" + (end - start) / 1000 + "] seconds ..");
- redis.select(8);
- redis.flushDB();
- //使用pipeline hmset
- Pipeline p = redis.pipelined();
- start = System.currentTimeMillis();
- for (int i=0;i<10000;i++) {
- data.clear();
- data.put("k_" + i, "v_" + i);
- p.hmset("key_" + i, data);
- }
- p.sync();
- end = System.currentTimeMillis();
- System.out.println("dbsize:[" + redis.dbSize() + "] .. ");
- System.out.println("hmset with pipeline used [" + (end - start) / 1000 + "] seconds ..");
- //hmget
- Set keys = redis.keys("*");
- //直接使用Jedis hgetall
- start = System.currentTimeMillis();
- Map<String,Map<String,String>> result = new HashMap<String,Map<String,String>>();
- for(String key : keys) {
- result.put(key, redis.hgetAll(key));
- }
- end = System.currentTimeMillis();
- System.out.println("result size:[" + result.size() + "] ..");
- System.out.println("hgetAll without pipeline used [" + (end - start) / 1000 + "] seconds ..");
- //使用pipeline hgetall
- Map<String,Response<Map<String,String>>> responses = new HashMap<String,Response<Map<String,String>>>(keys.size());
- result.clear();
- start = System.currentTimeMillis();
- for(String key : keys) {
- responses.put(key, p.hgetAll(key));
- }
- p.sync();
- for(String k : responses.keySet()) {
- result.put(k, responses.get(k).get());
- }
- end = System.currentTimeMillis();
- System.out.println("result size:[" + result.size() + "] ..");
- System.out.println("hgetAll with pipeline used [" + (end - start) / 1000 + "] seconds ..");
- redis.disconnect();
- }
- }
测试结果如下:
- dbsize:[10000] ..
- hmset without pipeline used [243] seconds ..
- dbsize:[10000] ..
- hmset with pipeline used [0] seconds ..
- result size:[10000] ..
- hgetAll without pipeline used [243] seconds ..
- result size:[10000] ..
- hgetAll with pipeline used [0] seconds ..
使用pipeline来批量读写10000条记录,就是小菜一碟,秒完。
转自:https://blog.csdn.net/simonchi/article/details/52231674
转自:https://www.cnblogs.com/an7ing/p/5082243.html
Java Redis的Pipeline管道,批量操作,节省大量网络往返时间 & Redis批量读写(hmset&hgetall) 使用Pipeline的更多相关文章
- 【JAVA今法修真】 第三章 关系非关系 redis法器
您好,我是南橘,万法仙门的掌门,刚刚从九州世界穿越到地球,因为时空乱流的影响导致我的法力全失,现在不得不通过这个平台向广大修真天才们借去力量.你们的每一个点赞,每一个关注都是让我回到九州世界的助力,兄 ...
- Python高级编程之生成器(Generator)与coroutine(三):coroutine与pipeline(管道)和Dataflow(数据流_
原创作品,转载请注明出处:点我 在前两篇文章中,我们介绍了什么是Generator和coroutine,在这一篇文章中,我们会介绍coroutine在模拟pipeline(管道 )和控制Dataflo ...
- 【spring boot】spring boot 基于redis pipeline 管道,批量操作redis命令
spring boot 2.x 使用RedisTemplate 操作 =================================== 1.pom.xml <!--spring2.0集成r ...
- 【redis】pipeline - 管道模型
redis-pipeline 2020-02-10: 因为我把github相关的wiki删了,所以导致破图...待解决.(讲真github-wiki跟project是2个url,真的不好用) 因为用的 ...
- .NET客户端实现Redis中的管道(PipeLine)与事物(Transactions)
序言 Redis中的管道(PipeLine)特性:简述一下就是,Redis如何从客户端一次发送多个命令,服务端到客户端如何一次性响应多个命令. Redis使用的是客户端-服务器模型和请求/响应协议的T ...
- Java 使用pipeline对redis进行批量读写
code import redis.clients.jedis.Jedis; import redis.clients.jedis.Pipeline; import java.util.List; p ...
- 使用pipeline管道执行redis命令
pipeline管道可以减少后端与redis的连接次数,从而实现了优化. 原理如下: 使用方法: 未使用pipeline前: strict_redis = get_redis_connection(' ...
- Redis中的管道(PipeLine)与事物(Transactions)
Redis中的管道(PipeLine)与事物(Transactions) 序言 Redis中的管道(PipeLine)特性:简述一下就是,Redis如何从客户端一次发送多个命令,服务端到客户端如何一次 ...
- Redis六(管道)
管道 为什么使用管道? Redis是一个TCP服务器,支持请求/响应协议. 在Redis中,请求通过以下步骤完成: 客户端向服务器发送查询,并从套接字读取,通常以阻塞的方式,用于服务器响应. 服务器处 ...
随机推荐
- ubuntu video,gdm swith
如果已经安装LightDM和GDM登录显示器.那么在Ubuntu下怎么在各种DM间任意切换呢? 以切换到GDM为例,打开终端,使用命令: sudo dpkg-reconfigure gdm 如果已经安 ...
- 流畅的python 读书笔记 第二章 序列构成的数组 列表推导
列表推导是构建列表(list)的快捷方式,而生成器表达式则可以用来创建其他任何类型的序列.如果你的代码里并不经常使用它们,那么很可能你错过了许多写出可读性更好且更高效的代码的机会. 2.2.1 列表推 ...
- EasyUI Tooltip 提示框
通过 $.fn.tooltip.defaults 重写默认的 defaults. 当用户移动鼠标指针在某个元素上时,出现提示信息窗口用来显示额外信息.提示内容可以包含任何来自页面的或者通过 ajax ...
- 跟我学Makefile(四)
使用函数:函数调用,很像变量的使用,也是以“$”来标识的,其语法如下: $(<function> <arguments>) 或是 ${<function> < ...
- CentOS7下的YUM源服务器搭建详解,过程写的很详细(转)
因为近期公司需要搭建一个YUM源服务器给大量的linux(mini)使用,所以因此在网上找了很多的教程,却没有一个特别详细的,很多都有遗漏,参差不齐.所以,打算自己做完之后方便以后查阅,特出此文档. ...
- PAT 1102 Invert a Binary Tree[比较简单]
1102 Invert a Binary Tree(25 分) The following is from Max Howell @twitter: Google: 90% of our engine ...
- C++ vector错误(1)
在用C++的vector的时候,要保证访问的下标不能超过vector的size.否则出现msvcp60.dll 访问禁止.
- mysql key index区别
看似有差不多的作用,加了Key的表与建立了Index的表,都可以进行快速的数据查询.他们之间的区别在于处于不同的层面上. Key即键值,是关系模型理论中的一部份,比如有主键(Primary Key), ...
- 4.10 Routing -- Asynchronous Routing
本节介绍了路由器的一些更高级的功能和处理复杂异步逻辑的能力. 一.A word on promises 1. 在Ember的Router中Ember使用了大量的Promises概念来处理异步逻辑.简而 ...
- 5.7 Components — Sending Actions From Components to Your Application
一.概述 1. 当一个组件在模板中被使用时,它具有发送action到这个模板的controller和routes的能力.当重大事件发生的时候,这些允许组件通知application,比如点击组件一个特 ...