洛谷 P2014 选课(树形背包)

思路

题面:洛谷 P2014

如题这种有依赖性的任务可以用一棵树表示,因为一个儿子要访问到就必须先访问到父亲。然后,本来本题所有树是森林(没有共同祖先),但是题中的节点\(0\)其实就可以当做一个LCA,从节点\(0\)开始dp。

状态定义:\(dp[x][m]\)x节点,选则m课,获得的最大学分

决策时,类比背包,遍历每一个状态,用儿子的状态更新

dp转移方程(已优化一维):

\[dp[x][i] = max{dp[x][i-j]+dp[son(x)][j]}
\]

这里需要注意的是,你定义的dp状态,是当前节点共选\(m\)课,而节点\(0\)是必须要选到的,所以应该一个选取\(m+1\)个课程,并且最终状态不是\(dp[0][m]\)而是\(dp[0][m+1]\)(卡了我好久……,所以定义dp状态时一定要自己清楚所代表的含义)

此题非常像洛谷 P1273 有线电视网,都是树形dp

代码

#include <cstdio>
#include <vector>
#define MAXN 303
#define INF 0x3fffffff
#define MAX(A,B) ((A)>(B)?(A):(B))
#define MIN(A,B) ((A)<(B)?(A):(B))
using namespace std;
int n,m,dp[MAXN][MAXN];
vector <int> mp[MAXN];
int dfs(int x){
int cnt=1;
for(register int i=0;i<mp[x].size();++i){
int v=mp[x][i];
int sz=dfs(v);
cnt+=sz;
for(register int j=m+1;j>=2;--j)
for(register int k=0;k<=MIN(j-1, sz);++k)
dp[x][j]=MAX(dp[x][j-k]+dp[v][k], dp[x][j]);
}
return cnt;
}
int main(){
scanf("%d %d", &n, &m);
for(register int i=1;i<=n;++i){
int k,s;
scanf("%d %d", &k, &s);
dp[i][1]=s;
mp[k].push_back(i);
}
dfs(0);
printf("%d", dp[0][m+1]);
return 0;
}

洛谷 P2014 选课(树形背包)的更多相关文章

  1. 洛谷P2014 选课 (树形dp)

    10月1日更新.题目:在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门课有个学分 ...

  2. 树形DP 洛谷P2014 选课

    洛谷P2014 选课 题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门 ...

  3. 洛谷 P2014 选课 && caioj 1108 树形动态规划(TreeDP)3:选课

    这里的先后关系可以看成节点和父亲的关系 在树里面,没有父亲肯定就没有节点 所以我们可以先修的看作父亲,后修的看作节点 所以这是一颗树 这题和上一道题比较相似 都是求树上最大点权和问题 但这道题是多叉树 ...

  4. 洛谷P2014 选课

    首先分析题目,这是一道树形dp的题目,是树形背包类的问题,以为每门课的先修课只有一门,所以这一定可以 构成一个森林结构,于是我们可以设计一个虚拟的根节点作为森林的根. 状态转移方程如下 dp[v][k ...

  5. 洛谷P2014——选课

    题目:https://www.luogu.org/problemnew/show/P2014 树状DP,注意枚举当前子树中选几个时的边界. 代码如下: #include<iostream> ...

  6. 洛谷 P2014 选课

    题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门课有个学分,每门课有一 ...

  7. 洛谷—— P2014 选课

    https://www.luogu.org/problem/show?pid=2014 题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课 ...

  8. C++ 洛谷 2014 选课 from_树形DP

    洛谷 2014 选课 没学树形DP的,看一下. 首先要学会多叉树转二叉树. 树有很多种,二叉树是一种人人喜欢的数据结构,简单而且规则.但一般来说,树形动规的题目很少出现二叉树,因此将多叉树转成二叉树就 ...

  9. 洛谷 P1858 多人背包 DP

    目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 洛谷 P1858 多人背包 题目描述 求01背包前k优解的价值 ...

随机推荐

  1. Laravel 使用 Provider 为程序提供运行时配置服务

    需求: 配置参数存在数据库中,Model 是 aah,需要在每次运行时,程序可以在任何地方采用 config("aah.name") 的方式访问配置信息. 思路: 采用 Provi ...

  2. [Selenium]刷新页面 Refresh page

    5 different ways to refresh a webpage using Selenium Webdriver   Here are the 5 different ways, usin ...

  3. Path Creation and Path Painting

    [Path Creation and Path Painting] Path creation and path painting are separate tasks. First you crea ...

  4. s16 计算机网络基础

    交换机设备说明 1)交换机设备说明 交换机概念:解决多台主机在一个网络里面通讯的需求 主机身份标识信息:称为叫做mac地址 交换机通讯的网络范围:称为叫做一个局域网 交换机传输数据问题: 01.会有广 ...

  5. 异步IO原理及相应函数

    何为异步IO? (1)几乎可以认为:异步IO就是操作系统用软件实现的一套中断响应系统.(2)异步IO的工作方法是:我们当前进程注册一个异步IO事件(使用signal注册一个信号 SIGIO的处理函数) ...

  6. 检查路径是否存在与创建指定路径(mfc)

    检查路径是否存在 if (access("D:\\Work\\Encryption\\DES", 0)) 为真,则路径不存在 创建指定路径 system("md D:\\ ...

  7. Concurrent Request:Inactive phase,No Manager status

    Symptom 随便submit一个request,发现几乎所有的Concurrent Manager都为No Manager状态,Phase为Inactive. Solution 一个Concurr ...

  8. 原生态在Hadoop上运行Java程序

    第一种:原生态运行jar包1,利用eclipse编写Map-Reduce方法,一般引入Hadoop-core-1.1.2.jar.注意这里eclipse里没有安装hadoop的插件,只是引入其匝包,该 ...

  9. 使用Emit实现给实体赋值

    Dapper.net的速度很快,最近看源码,原来他orm的实现是通过编写大量IL代码实现的. 使用DynamicMethod,自己编织一个给实体赋值的方法.这种写法效率很高,接近直接对属性赋值.比使用 ...

  10. WPF TextCompositionManager 事件说明

    TextCompositionManager中三个隧道事件,三个冒泡事件. 除了引发的过程不一样之外其作用是一样的. 事件分别为: InputStart InputUpdate TextInput 其 ...