(三)Audio子系统之AudioRecord.startRecording
在上一篇文章《(二)Audio子系统之new AudioRecord()》中已经介绍了Audio系统如何创建AudioRecord对象以及输入流,并创建了RecordThread线程,接下来,继续分析AudioRecord方法中的startRecording的实现
函数原型:
public void startRecording() throws IllegalStateException
作用:
开始进行录制
参数:
无
返回值:
无
异常:
若没有初始化完成时,抛出IllegalStateException
接下来进入系统分析具体实现
frameworks/base/media/java/android/media/AudioRecord.java
public void startRecording()
throws IllegalStateException {
if (mState != STATE_INITIALIZED) {
throw new IllegalStateException("startRecording() called on an "
+ "uninitialized AudioRecord.");
} // start recording
synchronized(mRecordingStateLock) {
if (native_start(MediaSyncEvent.SYNC_EVENT_NONE, 0) == SUCCESS) {
handleFullVolumeRec(true);
mRecordingState = RECORDSTATE_RECORDING;
}
}
}
首先判断是否已经初始化完毕了,在前一篇文章中,mState已经是STATE_INITIALIZED状态了。所以继续分析native_start函数
frameworks/base/core/jni/android_media_AudioRecord.cpp
static jint
android_media_AudioRecord_start(JNIEnv *env, jobject thiz, jint event, jint triggerSession)
{
sp<AudioRecord> lpRecorder = getAudioRecord(env, thiz);
if (lpRecorder == NULL ) {
jniThrowException(env, "java/lang/IllegalStateException", NULL);
return (jint) AUDIO_JAVA_ERROR;
} return nativeToJavaStatus(
lpRecorder->start((AudioSystem::sync_event_t)event, triggerSession));
}
继续往下:lpRecorder->start
frameworks\av\media\libmedia\AudioRecord.cpp
status_t AudioRecord::start(AudioSystem::sync_event_t event, int triggerSession)
{
AutoMutex lock(mLock);
if (mActive) {
return NO_ERROR;
} // reset current position as seen by client to 0
mProxy->setEpoch(mProxy->getEpoch() - mProxy->getPosition());
// force refresh of remaining frames by processAudioBuffer() as last
// read before stop could be partial.
mRefreshRemaining = true; mNewPosition = mProxy->getPosition() + mUpdatePeriod; int32_t flags = android_atomic_acquire_load(&mCblk->mFlags); status_t status = NO_ERROR;
if (!(flags & CBLK_INVALID)) {
ALOGV("mAudioRecord->start()");
status = mAudioRecord->start(event, triggerSession);
if (status == DEAD_OBJECT) {
flags |= CBLK_INVALID;
}
}
if (flags & CBLK_INVALID) {
status = restoreRecord_l("start");
} if (status != NO_ERROR) {
ALOGE("start() status %d", status);
} else {
mActive = true;
sp<AudioRecordThread> t = mAudioRecordThread;
if (t != 0) {
t->resume();
} else {
mPreviousPriority = getpriority(PRIO_PROCESS, 0);
get_sched_policy(0, &mPreviousSchedulingGroup);
androidSetThreadPriority(0, ANDROID_PRIORITY_AUDIO);
}
} return status;
}
在这个函数中主要的工作如下:
1.重置当前录音Buffer中的录音数据写入的起始位置,录音Buffer的组成在第一篇文章中已经介绍了;
2.标记mRefreshRemaining为true,从注释中可以看到,他应该是用来强制刷新剩余的frames,后面应该会突出这个变量的作用,先不急;
3.从mCblk->mFlags的地方获取flags,这里是0x0;
4.第一次来,肯定走mAudioRecord->start();
5.如果start失败了,会重新调用restoreRecord_l函数,再次建立输入流通道,这个函数在前一篇文章已经分析过了;
6.调用AudioRecordThread线程的resume函数;
这里我们主要分析第4、6步;
首先分析下AudioRecord.cpp::start()的第4步:mAudioRecord->start()
mAudioRecord是sp<IAudioRecord>类型的,也就是说他是Binder中的Bp端,我们需要找到BnAudioRecord,可以在AudioFlinger.h中找到Bn端的定义
frameworks\av\services\audioflinger\AudioFlinger.h
// server side of the client's IAudioRecord
class RecordHandle : public android::BnAudioRecord {
public:
RecordHandle(const sp<RecordThread::RecordTrack>& recordTrack);
virtual ~RecordHandle();
virtual status_t start(int /*AudioSystem::sync_event_t*/ event, int triggerSession);
virtual void stop();
virtual status_t onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags);
private:
const sp<RecordThread::RecordTrack> mRecordTrack; // for use from destructor
void stop_nonvirtual();
};
所以我们继续找RecordHandle类是在哪里实现的,同时,这里可以看到除了start方法以外还有stop方法。
frameworks\av\services\audioflinger\Tracks.cpp
status_t AudioFlinger::RecordHandle::start(int /*AudioSystem::sync_event_t*/ event,
int triggerSession) { return mRecordTrack->start((AudioSystem::sync_event_t)event, triggerSession);
}
在AudioFlinger.h文件中可以看到const sp<RecordThread::RecordTrack> mRecordTrack;他还是在Tracks.cpp中实现的,继续往下走
status_t AudioFlinger::RecordThread::RecordTrack::start(AudioSystem::sync_event_t event,
int triggerSession)
{ sp<ThreadBase> thread = mThread.promote();
if (thread != 0) {
RecordThread *recordThread = (RecordThread *)thread.get();
return recordThread->start(this, event, triggerSession);
} else {
return BAD_VALUE;
}
}
这里的Thread是在AudioRecord.cpp::openRecord_l()中调用createRecordTrack_l的Thread对象,再深入一点,在thread->createRecordTrack_l方法中调用了new RecordTrack(this,...),而RecordTrack是继承TrackBase的,在TrackBase父类的构造函数中TrackBase(ThreadBase *thread,...): RefBase(), mThread(thread),...{},这个父类的实现也是在Tracks.cpp。所以这里的mThread就是RecordThread
所以这里继续调用RecordThread的start方法
frameworks\av\services\audioflinger\Threads.cpp
status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
AudioSystem::sync_event_t event,
int triggerSession)
{
sp<ThreadBase> strongMe = this;
status_t status = NO_ERROR; if (event == AudioSystem::SYNC_EVENT_NONE) {
recordTrack->clearSyncStartEvent();
} else if (event != AudioSystem::SYNC_EVENT_SAME) {
recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
triggerSession,
recordTrack->sessionId(),
syncStartEventCallback,
recordTrack);
// Sync event can be cancelled by the trigger session if the track is not in a
// compatible state in which case we start record immediately
if (recordTrack->mSyncStartEvent->isCancelled()) {
recordTrack->clearSyncStartEvent();
} else {
// do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
recordTrack->mFramesToDrop = -
((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000);
}
} {
// This section is a rendezvous between binder thread executing start() and RecordThread
AutoMutex lock(mLock);
if (mActiveTracks.indexOf(recordTrack) >= 0) {
if (recordTrack->mState == TrackBase::PAUSING) {
ALOGV("active record track PAUSING -> ACTIVE");
recordTrack->mState = TrackBase::ACTIVE;
} else {
ALOGV("active record track state %d", recordTrack->mState);
}
return status;
} // TODO consider other ways of handling this, such as changing the state to :STARTING and
// adding the track to mActiveTracks after returning from AudioSystem::startInput(),
// or using a separate command thread
recordTrack->mState = TrackBase::STARTING_1;
mActiveTracks.add(recordTrack);
mActiveTracksGen++;
status_t status = NO_ERROR;
if (recordTrack->isExternalTrack()) {
mLock.unlock();
status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId());
mLock.lock();
// FIXME should verify that recordTrack is still in mActiveTracks
if (status != NO_ERROR) {//0
mActiveTracks.remove(recordTrack);
mActiveTracksGen++;
recordTrack->clearSyncStartEvent();
ALOGV("RecordThread::start error %d", status);
return status;
}
}
// Catch up with current buffer indices if thread is already running.
// This is what makes a new client discard all buffered data. If the track's mRsmpInFront
// was initialized to some value closer to the thread's mRsmpInFront, then the track could
// see previously buffered data before it called start(), but with greater risk of overrun. recordTrack->mRsmpInFront = mRsmpInRear;
recordTrack->mRsmpInUnrel = 0;
// FIXME why reset?
if (recordTrack->mResampler != NULL) {
recordTrack->mResampler->reset();
}
recordTrack->mState = TrackBase::STARTING_2;
// signal thread to start
mWaitWorkCV.broadcast();
if (mActiveTracks.indexOf(recordTrack) < 0) {
ALOGV("Record failed to start");
status = BAD_VALUE;
goto startError;
}
return status;
} startError:
if (recordTrack->isExternalTrack()) {
AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId());
}
recordTrack->clearSyncStartEvent();
// FIXME I wonder why we do not reset the state here?
return status;
}
在这个函数中主要的工作如下:
1.判断传过来的event的值,从AudioRecord.java可以看到他一直是SYNC_EVENT_NONE,所以这里就清除SyncStartEvent;
2.判断在mActiveTracks集合中传过来的recordTrack是否是第一个,而我们这是第一次来,肯定会是第一个,而如果不是第一个,也就是说之前因为某种状态已经开始了录音,所以再判断是否是PAUSING状态,更新状态到ACTIVE,然后直接return;
3.设置recordTrack的状态为STARTING_1,然后加到mActiveTracks集合中,如果此时再去indexOf的话,肯定就是1了;
4.判断recordTrack是否是外部的Track,而isExternalTrack的定义如下:
bool isTimedTrack() const { return (mType == TYPE_TIMED); }
bool isOutputTrack() const { return (mType == TYPE_OUTPUT); }
bool isPatchTrack() const { return (mType == TYPE_PATCH); }
bool isExternalTrack() const { return !isOutputTrack() && !isPatchTrack(); }
再回忆下,我们在new RecordTrack的时候传入的mType是TrackBase::TYPE_DEFAULT,所以这个recordTrack是外部的Track;
5.确定是ExternalTrack,那么就会调用AudioSystem::startInput方法开始采集数据,这个sessionId就是上一篇文章中出现的那个了,而对于这个mId,在AudioSystem::startInput中他的类型是audio_io_handle_t,在上一篇文章中,这个io_handle是通过AudioSystem::getInputForAttr获取到的,获取到之后通过checkRecordThread_l(input)获取到了一个RecordThread对象,我们看下RecordThread类:class RecordThread : public ThreadBase,再看下ThreadBase父类,父类的构造函数实现在Threads.cpp文件中,在这里我们发现把input赋值给了mId,也就是说,调用AudioSystem::startInput函数的参数,就是之前建立的输入流input以及生成的sessionId了。
AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
: Thread(false /*canCallJava*/),
mType(type),
mAudioFlinger(audioFlinger),
// mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize
// are set by PlaybackThread::readOutputParameters_l() or
// RecordThread::readInputParameters_l()
//FIXME: mStandby should be true here. Is this some kind of hack?
mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
// mName will be set by concrete (non-virtual) subclass
mDeathRecipient(new PMDeathRecipient(this))
{
}
6.如果mRsmpInRear不为null的话,就重置mRsmpInFront等缓冲区索引;这里显然还没开始录音,所以mRsmpInRear是null的;
7.设置recordTrack的状态为STARTING_2,然后调用mWaitWorkCV.broadcast()广播通知所有的线程开始工作。注意:这里不得不提前剧透下,在AudioSystem::startInput中,AudioFlinger::RecordThread已经开始跑起来了,所以其实broadcast对RecordThread是没有作用的,并且,需要特别注意的是,这里更新了recordTrack->mState为STARTING_2,之前在加入mActiveTracks时的状态是STARTING_1,这个地方比较有意思,这里先标记下,到时候在分析RecordThread的时候揭晓答案;
8.判断下recordTrack是否已经加到mActiveTracks集合中了,如果没有的话,就说明start失败了,需要stopInput等;
接下来继续分析AudioSystem::startInput方法
frameworks\av\media\libmedia\AudioSystem.cpp
status_t AudioSystem::startInput(audio_io_handle_t input,
audio_session_t session)
{
const sp<IAudioPolicyService>& aps = AudioSystem::get_audio_policy_service();
if (aps == 0) return PERMISSION_DENIED;
return aps->startInput(input, session);
}
继续调用AudioPolicyService的startInput方法
frameworks\av\services\audiopolicy\AudioPolicyInterfaceImpl.cpp
status_t AudioPolicyService::startInput(audio_io_handle_t input,
audio_session_t session)
{
if (mAudioPolicyManager == NULL) {
return NO_INIT;
}
Mutex::Autolock _l(mLock); return mAudioPolicyManager->startInput(input, session);
}
继续转发
frameworks\av\services\audiopolicy\AudioPolicyManager.cpp
status_t AudioPolicyManager::startInput(audio_io_handle_t input,
audio_session_t session)
{
ssize_t index = mInputs.indexOfKey(input);
if (index < 0) {
ALOGW("startInput() unknown input %d", input);
return BAD_VALUE;
}
sp<AudioInputDescriptor> inputDesc = mInputs.valueAt(index); index = inputDesc->mSessions.indexOf(session);
if (index < 0) {
ALOGW("startInput() unknown session %d on input %d", session, input);
return BAD_VALUE;
} // virtual input devices are compatible with other input devices
if (!isVirtualInputDevice(inputDesc->mDevice)) {
// for a non-virtual input device, check if there is another (non-virtual) active input
audio_io_handle_t activeInput = getActiveInput();
if (activeInput != 0 && activeInput != input) {
// If the already active input uses AUDIO_SOURCE_HOTWORD then it is closed,
// otherwise the active input continues and the new input cannot be started.
sp<AudioInputDescriptor> activeDesc = mInputs.valueFor(activeInput);
if (activeDesc->mInputSource == AUDIO_SOURCE_HOTWORD) {
ALOGW("startInput(%d) preempting low-priority input %d", input, activeInput); stopInput(activeInput, activeDesc->mSessions.itemAt(0));
releaseInput(activeInput, activeDesc->mSessions.itemAt(0));
} else {
ALOGE("startInput(%d) failed: other input %d already started", input, activeInput);
return INVALID_OPERATION;
}
}
} if (inputDesc->mRefCount == 0) {
if (activeInputsCount() == 0) {
SoundTrigger::setCaptureState(true);
}
setInputDevice(input, getNewInputDevice(input), true /* force */); // automatically enable the remote submix output when input is started if not
// used by a policy mix of type MIX_TYPE_RECORDERS
// For remote submix (a virtual device), we open only one input per capture request.
if (audio_is_remote_submix_device(inputDesc->mDevice)) {
ALOGV("audio_is_remote_submix_device(inputDesc->mDevice)");
String8 address = String8("");
if (inputDesc->mPolicyMix == NULL) {
address = String8("0");
} else if (inputDesc->mPolicyMix->mMixType == MIX_TYPE_PLAYERS) {
address = inputDesc->mPolicyMix->mRegistrationId;
}
if (address != "") {
setDeviceConnectionStateInt(AUDIO_DEVICE_OUT_REMOTE_SUBMIX,
AUDIO_POLICY_DEVICE_STATE_AVAILABLE,
address);
}
}
} ALOGV("AudioPolicyManager::startInput() input source = %d", inputDesc->mInputSource); inputDesc->mRefCount++;
return NO_ERROR;
}
在这个函数中主要工作如下:
1.通过input找到mInputs集合中的位置,并获取他的inputDesc;
2.判断input设备是否是虚拟设备,若不是则再判断是否存在active的设备,我们第一次来,不存在的!
3.第一次来嘛,所以会调用SoundTrigger::setCaptureState(true),不过这个是和语音识别有关系,这里就不多说了;
4.继续调用setInputDevice函数,其中getNewInputDevice函数的作用是根据input获取audio_devices_t设备,同样,这个设备在上一篇文章中的AudioPolicyManager::getInputForAttr方法中通过getDeviceAndMixForInputSource获取到的,即AUDIO_DEVICE_IN_BUILTIN_MIC内置MIC设备,同时在该函数最后更新了inputDesc->mDevice;
5.判断是否是remote_submix设备,然后做相应处理;
6.inputDesc的mRefCount计数+1;
继续分析setInputDevice函数
status_t AudioPolicyManager::setInputDevice(audio_io_handle_t input,
audio_devices_t device,
bool force,
audio_patch_handle_t *patchHandle)
{
status_t status = NO_ERROR; sp<AudioInputDescriptor> inputDesc = mInputs.valueFor(input);
if ((device != AUDIO_DEVICE_NONE) && ((device != inputDesc->mDevice) || force)) {
inputDesc->mDevice = device; DeviceVector deviceList = mAvailableInputDevices.getDevicesFromType(device);
if (!deviceList.isEmpty()) {
struct audio_patch patch;
inputDesc->toAudioPortConfig(&patch.sinks[0]);
// AUDIO_SOURCE_HOTWORD is for internal use only:
// handled as AUDIO_SOURCE_VOICE_RECOGNITION by the audio HAL
if (patch.sinks[0].ext.mix.usecase.source == AUDIO_SOURCE_HOTWORD &&
!inputDesc->mIsSoundTrigger) {
patch.sinks[0].ext.mix.usecase.source = AUDIO_SOURCE_VOICE_RECOGNITION;
}
patch.num_sinks = 1;
//only one input device for now
deviceList.itemAt(0)->toAudioPortConfig(&patch.sources[0]);
patch.num_sources = 1;
ssize_t index;
if (patchHandle && *patchHandle != AUDIO_PATCH_HANDLE_NONE) {
index = mAudioPatches.indexOfKey(*patchHandle);
} else {
index = mAudioPatches.indexOfKey(inputDesc->mPatchHandle);
}
sp< AudioPatch> patchDesc;
audio_patch_handle_t afPatchHandle = AUDIO_PATCH_HANDLE_NONE;
if (index >= 0) {
patchDesc = mAudioPatches.valueAt(index);
afPatchHandle = patchDesc->mAfPatchHandle;
} status_t status = mpClientInterface->createAudioPatch(&patch,
&afPatchHandle,
0);
if (status == NO_ERROR) {
if (index < 0) {
patchDesc = new AudioPatch((audio_patch_handle_t)nextUniqueId(),
&patch, mUidCached);
addAudioPatch(patchDesc->mHandle, patchDesc);
} else {
patchDesc->mPatch = patch;
}
patchDesc->mAfPatchHandle = afPatchHandle;
patchDesc->mUid = mUidCached;
if (patchHandle) {
*patchHandle = patchDesc->mHandle;
}
inputDesc->mPatchHandle = patchDesc->mHandle;
nextAudioPortGeneration();
mpClientInterface->onAudioPatchListUpdate();
}
}
}
return status;
}
在这个函数中主要的工作如下:
1.这里已经知道device与inputDesc->mDevice都已经是AUDIO_DEVICE_IN_BUILTIN_MIC,但是force是true;
2.通过device获取mAvailableInputDevices集合中的所有设备,到此刻,我们还只向该集合中添加一个device;
3.这里我们分析下struct audio_patch;他定义在system\core\include\system\audio.h,这里对audio_patch中的source与sinks进行赋值,注意一点,他把mId(audio_io_handle_t)赋值给了id,然后在这个audio_patch中保存了InputSource,sample_rate,channel_mask,format,hw_module等等,几乎都存进去了;
struct audio_patch {
audio_patch_handle_t id; /* patch unique ID */
unsigned int num_sources; /* number of sources in following array */
struct audio_port_config sources[AUDIO_PATCH_PORTS_MAX];
unsigned int num_sinks; /* number of sinks in following array */
struct audio_port_config sinks[AUDIO_PATCH_PORTS_MAX];
}; struct audio_port_config {
audio_port_handle_t id; /* port unique ID */
audio_port_role_t role; /* sink or source */
audio_port_type_t type; /* device, mix ... */
unsigned int config_mask; /* e.g AUDIO_PORT_CONFIG_ALL */
unsigned int sample_rate; /* sampling rate in Hz */
audio_channel_mask_t channel_mask; /* channel mask if applicable */
audio_format_t format; /* format if applicable */
struct audio_gain_config gain; /* gain to apply if applicable */
union {
struct audio_port_config_device_ext device; /* device specific info */
struct audio_port_config_mix_ext mix; /* mix specific info */
struct audio_port_config_session_ext session; /* session specific info */
} ext;
};
struct audio_port_config_device_ext {
audio_module_handle_t hw_module; /* module the device is attached to */
audio_devices_t type; /* device type (e.g AUDIO_DEVICE_OUT_SPEAKER) */
char address[AUDIO_DEVICE_MAX_ADDRESS_LEN]; /* device address. "" if N/A */
};
struct audio_port_config_mix_ext {
audio_module_handle_t hw_module; /* module the stream is attached to */
audio_io_handle_t handle; /* I/O handle of the input/output stream */
union {
//TODO: change use case for output streams: use strategy and mixer attributes
audio_stream_type_t stream;
audio_source_t source;
} usecase;
};
4.调用mpClientInterface->createAudioPatch创建Audio通路;
5.更新patchDesc的属性;
6.如果createAudioPatch的status是NO_ERROR的话,就调用mpClientInterface->onAudioPatchListUpdate更新AudioPatch列表;
这里我们着重分析第4、6步:
首先分析下AudioPolicyManager.cpp的AudioPolicyManager::setInputDevice的第4步:创建Audio通路
frameworks\av\services\audiopolicy\AudioPolicyClientImpl.cpp
status_t AudioPolicyService::AudioPolicyClient::createAudioPatch(const struct audio_patch *patch,
audio_patch_handle_t *handle,
int delayMs)
{
return mAudioPolicyService->clientCreateAudioPatch(patch, handle, delayMs);
}
继续向下
frameworks\av\services\audiopolicy\AudioPolicyService.cpp
status_t AudioPolicyService::clientCreateAudioPatch(const struct audio_patch *patch,
audio_patch_handle_t *handle,
int delayMs)
{
return mAudioCommandThread->createAudioPatchCommand(patch, handle, delayMs);
}
还是在这个文件中
status_t AudioPolicyService::AudioCommandThread::createAudioPatchCommand(
const struct audio_patch *patch,
audio_patch_handle_t *handle,
int delayMs)
{
status_t status = NO_ERROR; sp<AudioCommand> command = new AudioCommand();
command->mCommand = CREATE_AUDIO_PATCH;
CreateAudioPatchData *data = new CreateAudioPatchData();
data->mPatch = *patch;
data->mHandle = *handle;
command->mParam = data;
command->mWaitStatus = true;
ALOGV("AudioCommandThread() adding create patch delay %d", delayMs);
status = sendCommand(command, delayMs);
if (status == NO_ERROR) {
*handle = data->mHandle;
}
return status;
}
后面就是把audio_patch封装下,然后加入到AudioCommands队列中去,所以接下来直接看threadLoop中是怎么处理的
bool AudioPolicyService::AudioCommandThread::threadLoop()
{
nsecs_t waitTime = INT64_MAX; mLock.lock();
while (!exitPending())
{
sp<AudioPolicyService> svc;
while (!mAudioCommands.isEmpty() && !exitPending()) {
nsecs_t curTime = systemTime();
// commands are sorted by increasing time stamp: execute them from index 0 and up
if (mAudioCommands[0]->mTime <= curTime) {
sp<AudioCommand> command = mAudioCommands[0];
mAudioCommands.removeAt(0);
mLastCommand = command; switch (command->mCommand) {
case START_TONE: {
mLock.unlock();
ToneData *data = (ToneData *)command->mParam.get();
ALOGV("AudioCommandThread() processing start tone %d on stream %d",
data->mType, data->mStream);
delete mpToneGenerator;
mpToneGenerator = new ToneGenerator(data->mStream, 1.0);
mpToneGenerator->startTone(data->mType);
mLock.lock();
}break;
case STOP_TONE: {
mLock.unlock();
ALOGV("AudioCommandThread() processing stop tone");
if (mpToneGenerator != NULL) {
mpToneGenerator->stopTone();
delete mpToneGenerator;
mpToneGenerator = NULL;
}
mLock.lock();
}break;
case SET_VOLUME: {
VolumeData *data = (VolumeData *)command->mParam.get();
ALOGV("AudioCommandThread() processing set volume stream %d, \
volume %f, output %d", data->mStream, data->mVolume, data->mIO);
command->mStatus = AudioSystem::setStreamVolume(data->mStream,
data->mVolume,
data->mIO);
}break;
case SET_PARAMETERS: {
ParametersData *data = (ParametersData *)command->mParam.get();
ALOGV("AudioCommandThread() processing set parameters string %s, io %d",
data->mKeyValuePairs.string(), data->mIO);
command->mStatus = AudioSystem::setParameters(data->mIO, data->mKeyValuePairs);
}break;
case SET_VOICE_VOLUME: {
VoiceVolumeData *data = (VoiceVolumeData *)command->mParam.get();
ALOGV("AudioCommandThread() processing set voice volume volume %f",
data->mVolume);
command->mStatus = AudioSystem::setVoiceVolume(data->mVolume);
}break;
case STOP_OUTPUT: {
StopOutputData *data = (StopOutputData *)command->mParam.get();
ALOGV("AudioCommandThread() processing stop output %d",
data->mIO);
svc = mService.promote();
if (svc == 0) {
break;
}
mLock.unlock();
svc->doStopOutput(data->mIO, data->mStream, data->mSession);
mLock.lock();
}break;
case RELEASE_OUTPUT: {
ReleaseOutputData *data = (ReleaseOutputData *)command->mParam.get();
ALOGV("AudioCommandThread() processing release output %d",
data->mIO);
svc = mService.promote();
if (svc == 0) {
break;
}
mLock.unlock();
svc->doReleaseOutput(data->mIO, data->mStream, data->mSession);
mLock.lock();
}break;
case CREATE_AUDIO_PATCH: {
CreateAudioPatchData *data = (CreateAudioPatchData *)command->mParam.get();
ALOGV("AudioCommandThread() processing create audio patch");
sp<IAudioFlinger> af = AudioSystem::get_audio_flinger();
if (af == 0) {
command->mStatus = PERMISSION_DENIED;
} else {
command->mStatus = af->createAudioPatch(&data->mPatch, &data->mHandle);
}
} break;
case RELEASE_AUDIO_PATCH: {
ReleaseAudioPatchData *data = (ReleaseAudioPatchData *)command->mParam.get();
ALOGV("AudioCommandThread() processing release audio patch");
sp<IAudioFlinger> af = AudioSystem::get_audio_flinger();
if (af == 0) {
command->mStatus = PERMISSION_DENIED;
} else {
command->mStatus = af->releaseAudioPatch(data->mHandle);
}
} break;
case UPDATE_AUDIOPORT_LIST: {
ALOGV("AudioCommandThread() processing update audio port list");
svc = mService.promote();
if (svc == 0) {
break;
}
mLock.unlock();
svc->doOnAudioPortListUpdate();
mLock.lock();
}break;
case UPDATE_AUDIOPATCH_LIST: {
ALOGV("AudioCommandThread() processing update audio patch list");
svc = mService.promote();
if (svc == 0) {
break;
}
mLock.unlock();
svc->doOnAudioPatchListUpdate();
mLock.lock();
}break;
case SET_AUDIOPORT_CONFIG: {
SetAudioPortConfigData *data = (SetAudioPortConfigData *)command->mParam.get();
ALOGV("AudioCommandThread() processing set port config");
sp<IAudioFlinger> af = AudioSystem::get_audio_flinger();
if (af == 0) {
command->mStatus = PERMISSION_DENIED;
} else {
command->mStatus = af->setAudioPortConfig(&data->mConfig);
}
} break;
default:
ALOGW("AudioCommandThread() unknown command %d", command->mCommand);
}
{
Mutex::Autolock _l(command->mLock);
if (command->mWaitStatus) {
command->mWaitStatus = false;
command->mCond.signal();
}
}
waitTime = INT64_MAX;
} else {
waitTime = mAudioCommands[0]->mTime - curTime;
break;
}
}
// release mLock before releasing strong reference on the service as
// AudioPolicyService destructor calls AudioCommandThread::exit() which acquires mLock.
mLock.unlock();
svc.clear();
mLock.lock();
if (!exitPending() && mAudioCommands.isEmpty()) {
// release delayed commands wake lock
release_wake_lock(mName.string());
ALOGV("AudioCommandThread() going to sleep");
mWaitWorkCV.waitRelative(mLock, waitTime);
ALOGV("AudioCommandThread() waking up");
}
}
// release delayed commands wake lock before quitting
if (!mAudioCommands.isEmpty()) {
release_wake_lock(mName.string());
}
mLock.unlock();
return false;
}
这里直接看CREATE_AUDIO_PATCH的分支,他调用了AF端的af->createAudioPatch函数,同样在这个loop中,也有后面的UPDATE_AUDIOPATCH_LIST分支
frameworks\av\services\audioflinger\PatchPanel.cpp
status_t AudioFlinger::createAudioPatch(const struct audio_patch *patch,
audio_patch_handle_t *handle)
{
Mutex::Autolock _l(mLock);
if (mPatchPanel != 0) {
return mPatchPanel->createAudioPatch(patch, handle);
}
return NO_INIT;
}
继续往下走 (唉,老实说我都不想走了,绕来绕去的。。
status_t AudioFlinger::PatchPanel::createAudioPatch(const struct audio_patch *patch,
audio_patch_handle_t *handle)
{
ALOGV("createAudioPatch() num_sources %d num_sinks %d handle %d",
patch->num_sources, patch->num_sinks, *handle);
status_t status = NO_ERROR;
audio_patch_handle_t halHandle = AUDIO_PATCH_HANDLE_NONE;
sp<AudioFlinger> audioflinger = mAudioFlinger.promote();
if (audioflinger == 0) {
return NO_INIT;
} if (handle == NULL || patch == NULL) {
return BAD_VALUE;
}
if (patch->num_sources == 0 || patch->num_sources > AUDIO_PATCH_PORTS_MAX ||
patch->num_sinks == 0 || patch->num_sinks > AUDIO_PATCH_PORTS_MAX) {
return BAD_VALUE;
}
// limit number of sources to 1 for now or 2 sources for special cross hw module case.
// only the audio policy manager can request a patch creation with 2 sources.
if (patch->num_sources > 2) {
return INVALID_OPERATION;
} if (*handle != AUDIO_PATCH_HANDLE_NONE) {
for (size_t index = 0; *handle != 0 && index < mPatches.size(); index++) {
if (*handle == mPatches[index]->mHandle) {
ALOGV("createAudioPatch() removing patch handle %d", *handle);
halHandle = mPatches[index]->mHalHandle;
Patch *removedPatch = mPatches[index];
mPatches.removeAt(index);
delete removedPatch;
break;
}
}
} Patch *newPatch = new Patch(patch); switch (patch->sources[0].type) {
case AUDIO_PORT_TYPE_DEVICE: {
audio_module_handle_t srcModule = patch->sources[0].ext.device.hw_module;
ssize_t index = audioflinger->mAudioHwDevs.indexOfKey(srcModule);
if (index < 0) {
ALOGW("createAudioPatch() bad src hw module %d", srcModule);
status = BAD_VALUE;
goto exit;
}
AudioHwDevice *audioHwDevice = audioflinger->mAudioHwDevs.valueAt(index);
for (unsigned int i = 0; i < patch->num_sinks; i++) {
// support only one sink if connection to a mix or across HW modules
if ((patch->sinks[i].type == AUDIO_PORT_TYPE_MIX ||
patch->sinks[i].ext.mix.hw_module != srcModule) &&
patch->num_sinks > 1) {
status = INVALID_OPERATION;
goto exit;
}
// reject connection to different sink types
if (patch->sinks[i].type != patch->sinks[0].type) {
ALOGW("createAudioPatch() different sink types in same patch not supported");
status = BAD_VALUE;
goto exit;
}
// limit to connections between devices and input streams for HAL before 3.0
if (patch->sinks[i].ext.mix.hw_module == srcModule &&
(audioHwDevice->version() < AUDIO_DEVICE_API_VERSION_3_0) &&
(patch->sinks[i].type != AUDIO_PORT_TYPE_MIX)) {
ALOGW("createAudioPatch() invalid sink type %d for device source",
patch->sinks[i].type);
status = BAD_VALUE;
goto exit;
}
} if (patch->sinks[0].ext.device.hw_module != srcModule) {
// limit to device to device connection if not on same hw module
if (patch->sinks[0].type != AUDIO_PORT_TYPE_DEVICE) {
ALOGW("createAudioPatch() invalid sink type for cross hw module");
status = INVALID_OPERATION;
goto exit;
}
// special case num sources == 2 -=> reuse an exiting output mix to connect to the
// sink
if (patch->num_sources == 2) {
if (patch->sources[1].type != AUDIO_PORT_TYPE_MIX ||
patch->sinks[0].ext.device.hw_module !=
patch->sources[1].ext.mix.hw_module) {
ALOGW("createAudioPatch() invalid source combination");
status = INVALID_OPERATION;
goto exit;
} sp<ThreadBase> thread =
audioflinger->checkPlaybackThread_l(patch->sources[1].ext.mix.handle);
newPatch->mPlaybackThread = (MixerThread *)thread.get();
if (thread == 0) {
ALOGW("createAudioPatch() cannot get playback thread");
status = INVALID_OPERATION;
goto exit;
}
} else {
audio_config_t config = AUDIO_CONFIG_INITIALIZER;
audio_devices_t device = patch->sinks[0].ext.device.type;
String8 address = String8(patch->sinks[0].ext.device.address);
audio_io_handle_t output = AUDIO_IO_HANDLE_NONE;
newPatch->mPlaybackThread = audioflinger->openOutput_l(
patch->sinks[0].ext.device.hw_module,
&output,
&config,
device,
address,
AUDIO_OUTPUT_FLAG_NONE);
ALOGV("audioflinger->openOutput_l() returned %p",
newPatch->mPlaybackThread.get());
if (newPatch->mPlaybackThread == 0) {
status = NO_MEMORY;
goto exit;
}
}
uint32_t channelCount = newPatch->mPlaybackThread->channelCount();
audio_devices_t device = patch->sources[0].ext.device.type;
String8 address = String8(patch->sources[0].ext.device.address);
audio_config_t config = AUDIO_CONFIG_INITIALIZER;
audio_channel_mask_t inChannelMask = audio_channel_in_mask_from_count(channelCount);
config.sample_rate = newPatch->mPlaybackThread->sampleRate();
config.channel_mask = inChannelMask;
config.format = newPatch->mPlaybackThread->format();
audio_io_handle_t input = AUDIO_IO_HANDLE_NONE;
newPatch->mRecordThread = audioflinger->openInput_l(srcModule,
&input,
&config,
device,
address,
AUDIO_SOURCE_MIC,
AUDIO_INPUT_FLAG_NONE);
ALOGV("audioflinger->openInput_l() returned %p inChannelMask %08x",
newPatch->mRecordThread.get(), inChannelMask);
if (newPatch->mRecordThread == 0) {
status = NO_MEMORY;
goto exit;
}
status = createPatchConnections(newPatch, patch);
if (status != NO_ERROR) {
goto exit;
}
} else {
if (audioHwDevice->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
if (patch->sinks[0].type == AUDIO_PORT_TYPE_MIX) {
sp<ThreadBase> thread = audioflinger->checkRecordThread_l(
patch->sinks[0].ext.mix.handle);
if (thread == 0) {
ALOGW("createAudioPatch() bad capture I/O handle %d",
patch->sinks[0].ext.mix.handle);
status = BAD_VALUE;
goto exit;
}
status = thread->sendCreateAudioPatchConfigEvent(patch, &halHandle);
} else {
audio_hw_device_t *hwDevice = audioHwDevice->hwDevice();
status = hwDevice->create_audio_patch(hwDevice,
patch->num_sources,
patch->sources,
patch->num_sinks,
patch->sinks,
&halHandle);
}
} else {
sp<ThreadBase> thread = audioflinger->checkRecordThread_l(
patch->sinks[0].ext.mix.handle);
if (thread == 0) {
ALOGW("createAudioPatch() bad capture I/O handle %d",
patch->sinks[0].ext.mix.handle);
status = BAD_VALUE;
goto exit;
}
char *address;
if (strcmp(patch->sources[0].ext.device.address, "") != 0) {
address = audio_device_address_to_parameter(
patch->sources[0].ext.device.type,
patch->sources[0].ext.device.address);
} else {
address = (char *)calloc(1, 1);
}
AudioParameter param = AudioParameter(String8(address));
free(address);
param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),
(int)patch->sources[0].ext.device.type);
param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE),
(int)patch->sinks[0].ext.mix.usecase.source);
ALOGV("createAudioPatch() AUDIO_PORT_TYPE_DEVICE setParameters %s",
param.toString().string());
status = thread->setParameters(param.toString());
}
}
} break;
case AUDIO_PORT_TYPE_MIX: {
audio_module_handle_t srcModule = patch->sources[0].ext.mix.hw_module;
ssize_t index = audioflinger->mAudioHwDevs.indexOfKey(srcModule);
if (index < 0) {
ALOGW("createAudioPatch() bad src hw module %d", srcModule);
status = BAD_VALUE;
goto exit;
}
// limit to connections between devices and output streams
for (unsigned int i = 0; i < patch->num_sinks; i++) {
if (patch->sinks[i].type != AUDIO_PORT_TYPE_DEVICE) {
ALOGW("createAudioPatch() invalid sink type %d for mix source",
patch->sinks[i].type);
status = BAD_VALUE;
goto exit;
}
// limit to connections between sinks and sources on same HW module
if (patch->sinks[i].ext.device.hw_module != srcModule) {
status = BAD_VALUE;
goto exit;
}
}
AudioHwDevice *audioHwDevice = audioflinger->mAudioHwDevs.valueAt(index);
sp<ThreadBase> thread =
audioflinger->checkPlaybackThread_l(patch->sources[0].ext.mix.handle);
if (thread == 0) {
ALOGW("createAudioPatch() bad playback I/O handle %d",
patch->sources[0].ext.mix.handle);
status = BAD_VALUE;
goto exit;
}
if (audioHwDevice->version() >= AUDIO_DEVICE_API_VERSION_3_0) {
status = thread->sendCreateAudioPatchConfigEvent(patch, &halHandle);
} else {
audio_devices_t type = AUDIO_DEVICE_NONE;
for (unsigned int i = 0; i < patch->num_sinks; i++) {
type |= patch->sinks[i].ext.device.type;
}
char *address;
if (strcmp(patch->sinks[0].ext.device.address, "") != 0) {
//FIXME: we only support address on first sink with HAL version < 3.0
address = audio_device_address_to_parameter(
patch->sinks[0].ext.device.type,
patch->sinks[0].ext.device.address);
} else {
address = (char *)calloc(1, 1);
}
AudioParameter param = AudioParameter(String8(address));
free(address);
param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type);
status = thread->setParameters(param.toString());
} } break;
default:
status = BAD_VALUE;
goto exit;
}
exit:
ALOGV("createAudioPatch() status %d", status);
if (status == NO_ERROR) {
*handle = audioflinger->nextUniqueId();
newPatch->mHandle = *handle;
newPatch->mHalHandle = halHandle;
mPatches.add(newPatch);
ALOGV("createAudioPatch() added new patch handle %d halHandle %d", *handle, halHandle);
} else {
clearPatchConnections(newPatch);
delete newPatch;
}
return status;
}
在这个函数中主要工作如下:
1.在AudioPolicyManager::setInputDevice()函数中,num_sources与num_sinks都为1;
2.当halHandle不是AUDIO_PATCH_HANDLE_NONE的时候,就去mPatches集合中找到这个halHandle,然后删除他,而在这里,halHandle就是AUDIO_PATCH_HANDLE_NONE;
3.这里的source.type为AUDIO_PORT_TYPE_DEVICE,获取patch中的audio_module_handle_t,获取AF端的AudioHwDevice,后面有个for循环判断,根据之前的参数设定,均不会进到if里面;
4.判断source里的audio_module_handle_t与sink里的是否一致,那肯定一致噻;
5.再判断hal代码中的version版本,我们看下hardware\aw\audio\tulip\audio_hw.c的adev->hw_device.common.version = AUDIO_DEVICE_API_VERSION_2_0;
6.调用AF端的checkRecordThread_l函数,即通过audio_io_handle_t从mRecordThreads中获取到RecordThread线程;
7.通过address创建一个AudioParameter对象,并把source.type与source放入AudioParameter对象中;
8.调用thread->setParameters把AudioParameter对象传递过去
这里我们继续分析下第8步:thread->setParameters
frameworks\av\services\audioflinger\Threads.cpp
status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
{
status_t status; Mutex::Autolock _l(mLock); return sendSetParameterConfigEvent_l(keyValuePairs);
}
emmm,感觉又要绕上一大圈
status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair)
{
sp<ConfigEvent> configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair);
return sendConfigEvent_l(configEvent);
}
把AudioParameter对象转化为ConfigEvent对象,继续调用
status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp<ConfigEvent>& event)
{
status_t status = NO_ERROR; mConfigEvents.add(event);
mWaitWorkCV.signal();
mLock.unlock();
{
Mutex::Autolock _l(event->mLock);
while (event->mWaitStatus) {
if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) {
event->mStatus = TIMED_OUT;
event->mWaitStatus = false;
}
}
status = event->mStatus;
}
mLock.lock();
return status;
}
把ConfigEvent加入到mConfigEvents中,然后调用mWaitWorkCV.signal()通知RecordThread线程可以start了,在线程中接受到mWaitWorkCV.wait(mLock);时就会回到reacquire_wakelock位置,再继续往下,这时候调用了processConfigEvents_l,他就是用来处理ConfigEvent事件的
void AudioFlinger::ThreadBase::processConfigEvents_l()
{
bool configChanged = false; while (!mConfigEvents.isEmpty()) {
ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size());
sp<ConfigEvent> event = mConfigEvents[0];
mConfigEvents.removeAt(0);
switch (event->mType) {
case CFG_EVENT_PRIO: {
PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get();
// FIXME Need to understand why this has to be done asynchronously
int err = requestPriority(data->mPid, data->mTid, data->mPrio,
true /*asynchronous*/);
if (err != 0) {
ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
data->mPrio, data->mPid, data->mTid, err);
}
} break;
case CFG_EVENT_IO: {
IoConfigEventData *data = (IoConfigEventData *)event->mData.get();
audioConfigChanged(data->mEvent, data->mParam);
} break;
case CFG_EVENT_SET_PARAMETER: {
SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get();
if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) {
configChanged = true;
}
} break;
case CFG_EVENT_CREATE_AUDIO_PATCH: {
CreateAudioPatchConfigEventData *data =
(CreateAudioPatchConfigEventData *)event->mData.get();
event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle);
} break;
case CFG_EVENT_RELEASE_AUDIO_PATCH: {
ReleaseAudioPatchConfigEventData *data =
(ReleaseAudioPatchConfigEventData *)event->mData.get();
event->mStatus = releaseAudioPatch_l(data->mHandle);
} break;
default:
ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType);
break;
}
{
Mutex::Autolock _l(event->mLock);
if (event->mWaitStatus) {
event->mWaitStatus = false;
event->mCond.signal();
}
}
ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this);
} if (configChanged) {
cacheParameters_l();
}
}
这里果然是一直在等待处理mConfigEvents中的事件,而这个event->mType是CFG_EVENT_SET_PARAMETER,所以继续调用checkForNewParameter_l函数,而他肯定是调用的是RecordThread中的啦,这..绕了真·一大圈。
bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair,
status_t& status)
{
bool reconfig = false; status = NO_ERROR; audio_format_t reqFormat = mFormat;
uint32_t samplingRate = mSampleRate;
audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount); AudioParameter param = AudioParameter(keyValuePair);
int value; if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
samplingRate = value;
reconfig = true;
}
if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
status = BAD_VALUE;
} else {
reqFormat = (audio_format_t) value;
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
audio_channel_mask_t mask = (audio_channel_mask_t) value;
if (mask != AUDIO_CHANNEL_IN_MONO && mask != AUDIO_CHANNEL_IN_STEREO) {
status = BAD_VALUE;
} else {
channelMask = mask;
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
// do not accept frame count changes if tracks are open as the track buffer
// size depends on frame count and correct behavior would not be guaranteed
// if frame count is changed after track creation
if (mActiveTracks.size() > 0) {
status = INVALID_OPERATION;
} else {
reconfig = true;
}
}
if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
// forward device change to effects that have requested to be
// aware of attached audio device.
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setDevice_l(value);
} // store input device and output device but do not forward output device to audio HAL.
// Note that status is ignored by the caller for output device
// (see AudioFlinger::setParameters()
if (audio_is_output_devices(value)) {
mOutDevice = value;
status = BAD_VALUE;
} else {
mInDevice = value;
// disable AEC and NS if the device is a BT SCO headset supporting those
// pre processings
if (mTracks.size() > 0) {
bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
mAudioFlinger->btNrecIsOff();
for (size_t i = 0; i < mTracks.size(); i++) {
sp<RecordTrack> track = mTracks[i];
setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
}
}
}
}
if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
mAudioSource != (audio_source_t)value) {
// forward device change to effects that have requested to be
// aware of attached audio device.
for (size_t i = 0; i < mEffectChains.size(); i++) {
mEffectChains[i]->setAudioSource_l((audio_source_t)value);
}
mAudioSource = (audio_source_t)value;
} if (status == NO_ERROR) {
status = mInput->stream->common.set_parameters(&mInput->stream->common,
keyValuePair.string());
if (status == INVALID_OPERATION) {
inputStandBy();
status = mInput->stream->common.set_parameters(&mInput->stream->common,
keyValuePair.string());
}
if (reconfig) {
if (status == BAD_VALUE &&
reqFormat == mInput->stream->common.get_format(&mInput->stream->common) &&
reqFormat == AUDIO_FORMAT_PCM_16_BIT &&
(mInput->stream->common.get_sample_rate(&mInput->stream->common)
<= (2 * samplingRate)) &&
audio_channel_count_from_in_mask(
mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_2 &&
(channelMask == AUDIO_CHANNEL_IN_MONO ||
channelMask == AUDIO_CHANNEL_IN_STEREO)) {
status = NO_ERROR;
}
if (status == NO_ERROR) {
readInputParameters_l();
sendIoConfigEvent_l(AudioSystem::INPUT_CONFIG_CHANGED);
}
}
} return reconfig;
}
在这里,获取了到了AudioParameter的值,在前面我们知道,他只放入了Routing与InputSource的值,所以这里把patch->sources[0].ext.device.type的属性放入mInDevice,把patch->sinks[0].ext.mix.usecase.source放入mAudioSource中,最后调用HAL层中的set_parameters函数,把mInDevice与mAudioSource设置过去,显然这个reconfig一直是false,也就是说其他的参数并没有改变。
hardware\aw\audio\tulip\audio_hw.c
static int in_set_parameters(struct audio_stream *stream, const char *kvpairs)
{
struct sunxi_stream_in *in = (struct sunxi_stream_in *)stream;
struct sunxi_audio_device *adev = in->dev;
struct str_parms *parms;
char *str;
char value[128];
int ret, val = 0;
bool do_standby = false; ALOGV("in_set_parameters: %s", kvpairs); parms = str_parms_create_str(kvpairs); ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_INPUT_SOURCE, value, sizeof(value)); pthread_mutex_lock(&adev->lock);
pthread_mutex_lock(&in->lock);
if (ret >= 0) {
val = atoi(value);
/* no audio source uses val == 0 */
if ((in->source != val) && (val != 0)) {
in->source = val;
do_standby = true;
}
} ret = str_parms_get_str(parms, AUDIO_PARAMETER_STREAM_ROUTING, value, sizeof(value));
if (ret >= 0) {
val = atoi(value) & ~AUDIO_DEVICE_BIT_IN;
if ((adev->mode != AUDIO_MODE_IN_CALL) && (in->device != val) && (val != 0)) {
in->device = val;
do_standby = true;
} else if((adev->mode == AUDIO_MODE_IN_CALL) && (in->source != val) && (val != 0)) {
in->device = val; select_device(adev);
}
} if (do_standby)
do_input_standby(in);
pthread_mutex_unlock(&in->lock);
pthread_mutex_unlock(&adev->lock); str_parms_destroy(parms);
return ret;
}
1.获取INPUT_SOURCE属性,更新in->source,即AUDIO_SOURCE_MIC;
2.在adev_open函数中,定义了adev->mode为AUDIO_MODE_NORMAL且定义adev->in_device为AUDIO_DEVICE_IN_BUILTIN_MIC & ~AUDIO_DEVICE_BIT_IN,所以这里仅更新了输入流的in->device,不需要select device了,这里就是内置MIC,AUDIO_DEVICE_IN_BUILTIN_MIC;
到这里,Audio输入通路就完成了。
然后分析下AudioPolicyManager.cpp的AudioPolicyManager::setInputDevice的第6步:
这个mpClientInterface->createAudioPatch的返回值也比较长,一层一层往里面跟,可知,最后是在audio_hw.c中的in_set_parameters给赋值过去的,而ret是调用str_parms_get_str的结果
这个函数实现是在system\core\libcutils\str_parms.c文件中
int str_parms_get_str(struct str_parms *str_parms, const char *key, char *val,
int len)
{
char *value; value = hashmapGet(str_parms->map, (void *)key);
if (value)
return strlcpy(val, value, len); return -ENOENT;
}
这个函数的意思就是从str_parms的hashmap中把key的值提取出来并返回;而AUDIO_PARAMETER_STREAM_ROUTING这个key是在调用thread->setParameters(param.toString())之前把type的值放进去的,即
param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING),(int)patch->sources[0].ext.device.type);所以这里的status不是NO_ERROR,所以不会去更新AudioPatch列表了。
在前面一点,我们注意到AF端的RecordThread已经开始start了,这个要还记得,但是先放在这里,后面一点再分析。
然后继续分析AudioRecord.cpp::start()的第6步:AudioRecordThread线程的resume函数
frameworks\av\media\libmedia\AudioRecord.cpp
void AudioRecord::AudioRecordThread::resume()
{
AutoMutex _l(mMyLock);
mIgnoreNextPausedInt = true;
if (mPaused || mPausedInt) {
mPaused = false;
mPausedInt = false;
mMyCond.signal();
}
}
标记mIgnoreNextPausedInt为true,mPaused与mPausedInt都为false,然后调用mMyCond.signal()通知AudioRecordThread线程
bool AudioRecord::AudioRecordThread::threadLoop()
{
{
AutoMutex _l(mMyLock);
if (mPaused) {
mMyCond.wait(mMyLock);
// caller will check for exitPending()
return true;
}
if (mIgnoreNextPausedInt) {
mIgnoreNextPausedInt = false;
mPausedInt = false;
}
if (mPausedInt) {
if (mPausedNs > 0) {
(void) mMyCond.waitRelative(mMyLock, mPausedNs);
} else {
mMyCond.wait(mMyLock);
}
mPausedInt = false;
return true;
}
}
nsecs_t ns = mReceiver.processAudioBuffer();
switch (ns) {
case 0:
return true;
case NS_INACTIVE:
pauseInternal();
return true;
case NS_NEVER:
return false;
case NS_WHENEVER:
// FIXME increase poll interval, or make event-driven
ns = 1000000000LL;
// fall through
default:
LOG_ALWAYS_FATAL_IF(ns < 0, "processAudioBuffer() returned %" PRId64, ns);
pauseInternal(ns);
return true;
}
}
在AudioRecordThread线程中,在mMyCond.wait(mMyLock);等待signal()信号,这里我们知道mPaused为false,mIgnoreNextPausedInt也将变为false,mPausedInt也为false,所以在下一次循环中,就会调用processAudioBuffer函数,调用之后返回一个NS_WHENEVER,所以将对这个线程进行延时1000000000LL,也就是1s,然后一直循环下去,直到应用终止录音。
接下来继续分析下processAudioBuffer函数
nsecs_t AudioRecord::processAudioBuffer()
{
mLock.lock();
if (mAwaitBoost) {
mAwaitBoost = false;
mLock.unlock();
static const int32_t kMaxTries = 5;
int32_t tryCounter = kMaxTries;
uint32_t pollUs = 10000;
do {
int policy = sched_getscheduler(0);
if (policy == SCHED_FIFO || policy == SCHED_RR) {
break;
}
usleep(pollUs);
pollUs <<= 1;
} while (tryCounter-- > 0);
if (tryCounter < 0) {
ALOGE("did not receive expected priority boost on time");
}
// Run again immediately
return 0;
} // Can only reference mCblk while locked
int32_t flags = android_atomic_and(~CBLK_OVERRUN, &mCblk->mFlags); // Check for track invalidation
if (flags & CBLK_INVALID) {
(void) restoreRecord_l("processAudioBuffer");
mLock.unlock();
// Run again immediately, but with a new IAudioRecord
return 0;
} bool active = mActive; // Manage overrun callback, must be done under lock to avoid race with releaseBuffer()
bool newOverrun = false;
if (flags & CBLK_OVERRUN) {
if (!mInOverrun) {
mInOverrun = true;
newOverrun = true;
}
} // Get current position of server
size_t position = mProxy->getPosition(); // Manage marker callback
bool markerReached = false;
size_t markerPosition = mMarkerPosition;
// FIXME fails for wraparound, need 64 bits
if (!mMarkerReached && (markerPosition > 0) && (position >= markerPosition)) {
mMarkerReached = markerReached = true;
} // Determine the number of new position callback(s) that will be needed, while locked
size_t newPosCount = 0;
size_t newPosition = mNewPosition;
uint32_t updatePeriod = mUpdatePeriod;
// FIXME fails for wraparound, need 64 bits
if (updatePeriod > 0 && position >= newPosition) {
newPosCount = ((position - newPosition) / updatePeriod) + 1;
mNewPosition += updatePeriod * newPosCount;
} // Cache other fields that will be needed soon
uint32_t notificationFrames = mNotificationFramesAct;
if (mRefreshRemaining) {
mRefreshRemaining = false;
mRemainingFrames = notificationFrames;
mRetryOnPartialBuffer = false;
}
size_t misalignment = mProxy->getMisalignment();
uint32_t sequence = mSequence; // These fields don't need to be cached, because they are assigned only by set():
// mTransfer, mCbf, mUserData, mSampleRate, mFrameSize mLock.unlock(); // perform callbacks while unlocked
if (newOverrun) {
mCbf(EVENT_OVERRUN, mUserData, NULL);
}
if (markerReached) {
mCbf(EVENT_MARKER, mUserData, &markerPosition);
}
while (newPosCount > 0) {
size_t temp = newPosition;
mCbf(EVENT_NEW_POS, mUserData, &temp);
newPosition += updatePeriod;
newPosCount--;
}
if (mObservedSequence != sequence) {
mObservedSequence = sequence;
mCbf(EVENT_NEW_IAUDIORECORD, mUserData, NULL);
} // if inactive, then don't run me again until re-started
if (!active) {
return NS_INACTIVE;
} // Compute the estimated time until the next timed event (position, markers)
uint32_t minFrames = ~0;
if (!markerReached && position < markerPosition) {
minFrames = markerPosition - position;
}
if (updatePeriod > 0 && updatePeriod < minFrames) {
minFrames = updatePeriod;
} // If > 0, poll periodically to recover from a stuck server. A good value is 2.
static const uint32_t kPoll = 0;
if (kPoll > 0 && mTransfer == TRANSFER_CALLBACK && kPoll * notificationFrames < minFrames) {
minFrames = kPoll * notificationFrames;
} // Convert frame units to time units
nsecs_t ns = NS_WHENEVER;
if (minFrames != (uint32_t) ~0) {
// This "fudge factor" avoids soaking CPU, and compensates for late progress by server
static const nsecs_t kFudgeNs = 10000000LL; // 10 ms
ns = ((minFrames * 1000000000LL) / mSampleRate) + kFudgeNs;
} // If not supplying data by EVENT_MORE_DATA, then we're done
if (mTransfer != TRANSFER_CALLBACK) {
return ns;
} struct timespec timeout;
const struct timespec *requested = &ClientProxy::kForever;
if (ns != NS_WHENEVER) {
timeout.tv_sec = ns / 1000000000LL;
timeout.tv_nsec = ns % 1000000000LL;
ALOGV("timeout %ld.%03d", timeout.tv_sec, (int) timeout.tv_nsec / 1000000);
requested = &timeout;
} while (mRemainingFrames > 0) { Buffer audioBuffer;
audioBuffer.frameCount = mRemainingFrames;
size_t nonContig;
status_t err = obtainBuffer(&audioBuffer, requested, NULL, &nonContig);
LOG_ALWAYS_FATAL_IF((err != NO_ERROR) != (audioBuffer.frameCount == 0),
"obtainBuffer() err=%d frameCount=%zu", err, audioBuffer.frameCount);
requested = &ClientProxy::kNonBlocking;
size_t avail = audioBuffer.frameCount + nonContig;
ALOGV("obtainBuffer(%u) returned %zu = %zu + %zu err %d",
mRemainingFrames, avail, audioBuffer.frameCount, nonContig, err);
if (err != NO_ERROR) {
if (err == TIMED_OUT || err == WOULD_BLOCK || err == -EINTR) {
break;
}
ALOGE("Error %d obtaining an audio buffer, giving up.", err);
return NS_NEVER;
} if (mRetryOnPartialBuffer) {
mRetryOnPartialBuffer = false;
if (avail < mRemainingFrames) {
int64_t myns = ((mRemainingFrames - avail) *
1100000000LL) / mSampleRate;
if (ns < 0 || myns < ns) {
ns = myns;
}
return ns;
}
} size_t reqSize = audioBuffer.size;
mCbf(EVENT_MORE_DATA, mUserData, &audioBuffer);
size_t readSize = audioBuffer.size; // Sanity check on returned size
if (ssize_t(readSize) < 0 || readSize > reqSize) {
ALOGE("EVENT_MORE_DATA requested %zu bytes but callback returned %zd bytes",
reqSize, ssize_t(readSize));
return NS_NEVER;
} if (readSize == 0) {
// The callback is done consuming buffers
// Keep this thread going to handle timed events and
// still try to provide more data in intervals of WAIT_PERIOD_MS
// but don't just loop and block the CPU, so wait
return WAIT_PERIOD_MS * 1000000LL;
} size_t releasedFrames = readSize / mFrameSize;
audioBuffer.frameCount = releasedFrames;
mRemainingFrames -= releasedFrames;
if (misalignment >= releasedFrames) {
misalignment -= releasedFrames;
} else {
misalignment = 0;
} releaseBuffer(&audioBuffer); // FIXME here is where we would repeat EVENT_MORE_DATA again on same advanced buffer
// if callback doesn't like to accept the full chunk
if (readSize < reqSize) {
continue;
} // There could be enough non-contiguous frames available to satisfy the remaining request
if (mRemainingFrames <= nonContig) {
continue;
} #if 0
// This heuristic tries to collapse a series of EVENT_MORE_DATA that would total to a
// sum <= notificationFrames. It replaces that series by at most two EVENT_MORE_DATA
// that total to a sum == notificationFrames.
if (0 < misalignment && misalignment <= mRemainingFrames) {
mRemainingFrames = misalignment;
return (mRemainingFrames * 1100000000LL) / mSampleRate;
}
#endif }
mRemainingFrames = notificationFrames;
mRetryOnPartialBuffer = true; // A lot has transpired since ns was calculated, so run again immediately and re-calculate
return 0;
}
在这个函数中的主要工作如下:
1.对于mAwaitBoost变量,我们查找一下,可以知道只有当音频输入标志mFlags为AUDIO_INPUT_FLAG_FAST才有可能是true,而之前分析,在这里mFlags为AUDIO_INPUT_FLAG_NONE;
2.通过mCblk->mFlags判断是否缓冲区数据已经overrun,并存储在flags中,然后检查track是否失效;
{插一句,这个mActive是在AudioRecordThread线程resume之前赋值true的,然后我们回过头来看AudioRecord::set函数的结尾,对一大堆变量进行了初始化,而这些变量大部分在这里使用到了,如mInOverrun为false,mMarkerPosition为0,mMarkerReached为false,mNewPosition为0,mUpdatePeriod为0,mSequence为1,mNotificationFramesAct是在之前通过audioFlinger->openRecord获取到的,这里为1024}
3.检查缓冲区数据是否已经overrun,如果出现overrun,则标记mInOverrun与newOverrun都为true,后面会通过mCbf发送EVENT_OVERRUN事件给到上一层,这个mCbf其实是JNI中的recorderCallback的回调函数;
4.判断如果当前位置超过标记的位置了,则标记mMarkerReached与markerReached为true,后面会通过mCbf发送EVENT_MARKER事件给到上一层;
5.判断是否需要更新mRemainingFrames,以及是否需要发送EVENT_NEW_POS以及EVENT_NEW_IAUDIORECORD事件;
6.这里的mTransfer在AudioRecord::set函数中已经分析了,为TRANSFER_SYNC,所以最后直接return NS_WHENEVER;
也就是说,在AudioRecordThread这个线程中,通过对mCblk->mFlags的判断来更新当前缓冲区数据的状态,EVENT_OVERRUN/EVENT_MARKER/EVENT_NEW_POS/EVENT_NEW_IAUDIORECORD等。
好了,AudioRecordThread已经分析完了,之前我们分析到Thread.cpp中的AudioFlinger::ThreadBase::sendConfigEvent_l函数调用了mWaitWorkCV.signal(),所以我们继续分析下RecordThread线程
frameworks\av\services\audioflinger\Threads.cpp
bool AudioFlinger::RecordThread::threadLoop()
{
nsecs_t lastWarning = 0; inputStandBy(); reacquire_wakelock:
sp<RecordTrack> activeTrack;
int activeTracksGen;
{
Mutex::Autolock _l(mLock);
size_t size = mActiveTracks.size();
activeTracksGen = mActiveTracksGen;
if (size > 0) {
// FIXME an arbitrary choice
activeTrack = mActiveTracks[0];
acquireWakeLock_l(activeTrack->uid());
if (size > 1) {
SortedVector<int> tmp;
for (size_t i = 0; i < size; i++) {
tmp.add(mActiveTracks[i]->uid());
}
updateWakeLockUids_l(tmp);
}
} else {
acquireWakeLock_l(-1);
}
} // used to request a deferred sleep, to be executed later while mutex is unlocked
uint32_t sleepUs = 0; // loop while there is work to do
for (;;) {
Vector< sp<EffectChain> > effectChains; // sleep with mutex unlocked
if (sleepUs > 0) {
usleep(sleepUs);
sleepUs = 0;
} // activeTracks accumulates a copy of a subset of mActiveTracks
Vector< sp<RecordTrack> > activeTracks; // reference to the (first and only) active fast track
sp<RecordTrack> fastTrack; // reference to a fast track which is about to be removed
sp<RecordTrack> fastTrackToRemove; { // scope for mLock
Mutex::Autolock _l(mLock); processConfigEvents_l(); // check exitPending here because checkForNewParameters_l() and
// checkForNewParameters_l() can temporarily release mLock
if (exitPending()) {
break;
} // if no active track(s), then standby and release wakelock
size_t size = mActiveTracks.size();
if (size == 0) {
standbyIfNotAlreadyInStandby();
// exitPending() can't become true here
releaseWakeLock_l();
ALOGV("RecordThread: loop stopping");
// go to sleep
mWaitWorkCV.wait(mLock);
ALOGV("RecordThread: loop starting");
goto reacquire_wakelock;
} if (mActiveTracksGen != activeTracksGen) {
activeTracksGen = mActiveTracksGen;
SortedVector<int> tmp;
for (size_t i = 0; i < size; i++) {
tmp.add(mActiveTracks[i]->uid());
}
updateWakeLockUids_l(tmp);
} bool doBroadcast = false;
for (size_t i = 0; i < size; ) { activeTrack = mActiveTracks[i];
if (activeTrack->isTerminated()) {
if (activeTrack->isFastTrack()) {
ALOG_ASSERT(fastTrackToRemove == 0);
fastTrackToRemove = activeTrack;
}
removeTrack_l(activeTrack);
mActiveTracks.remove(activeTrack);
mActiveTracksGen++;
size--;
continue;
} TrackBase::track_state activeTrackState = activeTrack->mState;
switch (activeTrackState) { case TrackBase::PAUSING:
mActiveTracks.remove(activeTrack);
mActiveTracksGen++;
doBroadcast = true;
size--;
continue; case TrackBase::STARTING_1:
sleepUs = 10000;
i++;
continue; case TrackBase::STARTING_2:
doBroadcast = true;
mStandby = false;
activeTrack->mState = TrackBase::ACTIVE;
break; case TrackBase::ACTIVE:
break; case TrackBase::IDLE:
i++;
continue; default:
LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState);
} activeTracks.add(activeTrack);
i++; if (activeTrack->isFastTrack()) {
ALOG_ASSERT(!mFastTrackAvail);
ALOG_ASSERT(fastTrack == 0);
fastTrack = activeTrack;
}
}
if (doBroadcast) {
mStartStopCond.broadcast();
} // sleep if there are no active tracks to process
if (activeTracks.size() == 0) {
if (sleepUs == 0) {
sleepUs = kRecordThreadSleepUs;
}
continue;
}
sleepUs = 0; lockEffectChains_l(effectChains);
} // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0 size_t size = effectChains.size();
for (size_t i = 0; i < size; i++) {
// thread mutex is not locked, but effect chain is locked
effectChains[i]->process_l();
} // Push a new fast capture state if fast capture is not already running, or cblk change
if (mFastCapture != 0) {
FastCaptureStateQueue *sq = mFastCapture->sq();
FastCaptureState *state = sq->begin();
bool didModify = false;
FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED;
if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME &&
(kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) {
if (state->mCommand == FastCaptureState::COLD_IDLE) {
int32_t old = android_atomic_inc(&mFastCaptureFutex);
if (old == -1) {
(void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1);
}
}
state->mCommand = FastCaptureState::READ_WRITE;
#if 0 // FIXME
mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
FastCaptureDumpState::kSamplingNforLowRamDevice : FastMixerDumpState::kSamplingN);
#endif
didModify = true;
}
audio_track_cblk_t *cblkOld = state->mCblk;
audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL;
if (cblkNew != cblkOld) {
state->mCblk = cblkNew;
// block until acked if removing a fast track
if (cblkOld != NULL) {
block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED;
}
didModify = true;
}
sq->end(didModify);
if (didModify) {
sq->push(block);
#if 0
if (kUseFastCapture == FastCapture_Dynamic) {
mNormalSource = mPipeSource;
}
#endif
}
} // now run the fast track destructor with thread mutex unlocked
fastTrackToRemove.clear(); // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one.
// Only the client(s) that are too slow will overrun. But if even the fastest client is too
// slow, then this RecordThread will overrun by not calling HAL read often enough.
// If destination is non-contiguous, first read past the nominal end of buffer, then
// copy to the right place. Permitted because mRsmpInBuffer was over-allocated. int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1);
ssize_t framesRead; // If an NBAIO source is present, use it to read the normal capture's data
if (mPipeSource != 0) {
size_t framesToRead = mBufferSize / mFrameSize;
framesRead = mPipeSource->read(&mRsmpInBuffer[rear * mChannelCount],
framesToRead, AudioBufferProvider::kInvalidPTS);
if (framesRead == 0) {
// since pipe is non-blocking, simulate blocking input
sleepUs = (framesToRead * 1000000LL) / mSampleRate;
}
// otherwise use the HAL / AudioStreamIn directly
} else {
ssize_t bytesRead = mInput->stream->read(mInput->stream,
&mRsmpInBuffer[rear * mChannelCount], mBufferSize);
if (bytesRead < 0) {
framesRead = bytesRead;
} else {
framesRead = bytesRead / mFrameSize;
}
} if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) {
ALOGE("read failed: framesRead=%d", framesRead);
// Force input into standby so that it tries to recover at next read attempt
inputStandBy();
sleepUs = kRecordThreadSleepUs;
}
if (framesRead <= 0) {
goto unlock;
}
ALOG_ASSERT(framesRead > 0); if (mTeeSink != 0) {
(void) mTeeSink->write(&mRsmpInBuffer[rear * mChannelCount], framesRead);
}
// If destination is non-contiguous, we now correct for reading past end of buffer.
{
size_t part1 = mRsmpInFramesP2 - rear;
if ((size_t) framesRead > part1) {
memcpy(mRsmpInBuffer, &mRsmpInBuffer[mRsmpInFramesP2 * mChannelCount],
(framesRead - part1) * mFrameSize);
}
}
rear = mRsmpInRear += framesRead; size = activeTracks.size();
// loop over each active track
for (size_t i = 0; i < size; i++) {
activeTrack = activeTracks[i]; // skip fast tracks, as those are handled directly by FastCapture
if (activeTrack->isFastTrack()) {
continue;
} enum {
OVERRUN_UNKNOWN,
OVERRUN_TRUE,
OVERRUN_FALSE
} overrun = OVERRUN_UNKNOWN; // loop over getNextBuffer to handle circular sink
for (;;) { activeTrack->mSink.frameCount = ~0; status_t status = activeTrack->getNextBuffer(&activeTrack->mSink);
size_t framesOut = activeTrack->mSink.frameCount;
LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0)); int32_t front = activeTrack->mRsmpInFront;
ssize_t filled = rear - front;
size_t framesIn; if (filled < 0) {
// should not happen, but treat like a massive overrun and re-sync
framesIn = 0;
activeTrack->mRsmpInFront = rear;
overrun = OVERRUN_TRUE;
} else if ((size_t) filled <= mRsmpInFrames) {
framesIn = (size_t) filled;
} else {
// client is not keeping up with server, but give it latest data
framesIn = mRsmpInFrames;
activeTrack->mRsmpInFront = front = rear - framesIn;
overrun = OVERRUN_TRUE;
} if (framesOut == 0 || framesIn == 0) {
break;
} if (activeTrack->mResampler == NULL) {
// no resampling
if (framesIn > framesOut) {
framesIn = framesOut;
} else {
framesOut = framesIn;
}
int8_t *dst = activeTrack->mSink.i8;
while (framesIn > 0) {
front &= mRsmpInFramesP2 - 1;
size_t part1 = mRsmpInFramesP2 - front;
if (part1 > framesIn) {
part1 = framesIn;
}
int8_t *src = (int8_t *)mRsmpInBuffer + (front * mFrameSize);
if (mChannelCount == activeTrack->mChannelCount) {
memcpy(dst, src, part1 * mFrameSize);
} else if (mChannelCount == 1) {
upmix_to_stereo_i16_from_mono_i16((int16_t *)dst, (const int16_t *)src,
part1);
} else {
downmix_to_mono_i16_from_stereo_i16((int16_t *)dst, (const int16_t *)src,
part1);
}
dst += part1 * activeTrack->mFrameSize;
front += part1;
framesIn -= part1;
}
activeTrack->mRsmpInFront += framesOut; } else {
// resampling
// FIXME framesInNeeded should really be part of resampler API, and should
// depend on the SRC ratio
// to keep mRsmpInBuffer full so resampler always has sufficient input
size_t framesInNeeded;
// FIXME only re-calculate when it changes, and optimize for common ratios
// Do not precompute in/out because floating point is not associative
// e.g. a*b/c != a*(b/c).
const double in(mSampleRate);
const double out(activeTrack->mSampleRate);
framesInNeeded = ceil(framesOut * in / out) + 1;
ALOGV("need %u frames in to produce %u out given in/out ratio of %.4g",
framesInNeeded, framesOut, in / out);
// Although we theoretically have framesIn in circular buffer, some of those are
// unreleased frames, and thus must be discounted for purpose of budgeting.
size_t unreleased = activeTrack->mRsmpInUnrel;
framesIn = framesIn > unreleased ? framesIn - unreleased : 0;
if (framesIn < framesInNeeded) {
ALOGV("not enough to resample: have %u frames in but need %u in to "
"produce %u out given in/out ratio of %.4g",
framesIn, framesInNeeded, framesOut, in / out);
size_t newFramesOut = framesIn > 0 ? floor((framesIn - 1) * out / in) : 0;
LOG_ALWAYS_FATAL_IF(newFramesOut >= framesOut);
if (newFramesOut == 0) {
break;
}
framesInNeeded = ceil(newFramesOut * in / out) + 1;
ALOGV("now need %u frames in to produce %u out given out/in ratio of %.4g",
framesInNeeded, newFramesOut, out / in);
LOG_ALWAYS_FATAL_IF(framesIn < framesInNeeded);
ALOGV("success 2: have %u frames in and need %u in to produce %u out "
"given in/out ratio of %.4g",
framesIn, framesInNeeded, newFramesOut, in / out);
framesOut = newFramesOut;
} else {
ALOGV("success 1: have %u in and need %u in to produce %u out "
"given in/out ratio of %.4g",
framesIn, framesInNeeded, framesOut, in / out);
} // reallocate mRsmpOutBuffer as needed; we will grow but never shrink
if (activeTrack->mRsmpOutFrameCount < framesOut) {
// FIXME why does each track need it's own mRsmpOutBuffer? can't they share?
delete[] activeTrack->mRsmpOutBuffer;
// resampler always outputs stereo
activeTrack->mRsmpOutBuffer = new int32_t[framesOut * FCC_2];
activeTrack->mRsmpOutFrameCount = framesOut;
} // resampler accumulates, but we only have one source track
memset(activeTrack->mRsmpOutBuffer, 0, framesOut * FCC_2 * sizeof(int32_t));
activeTrack->mResampler->resample(activeTrack->mRsmpOutBuffer, framesOut,
// FIXME how about having activeTrack implement this interface itself?
activeTrack->mResamplerBufferProvider
/*this*/ /* AudioBufferProvider* */);
// ditherAndClamp() works as long as all buffers returned by
// activeTrack->getNextBuffer() are 32 bit aligned which should be always true.
if (activeTrack->mChannelCount == 1) {
// temporarily type pun mRsmpOutBuffer from Q4.27 to int16_t
ditherAndClamp(activeTrack->mRsmpOutBuffer, activeTrack->mRsmpOutBuffer,
framesOut);
// the resampler always outputs stereo samples:
// do post stereo to mono conversion
downmix_to_mono_i16_from_stereo_i16(activeTrack->mSink.i16,
(const int16_t *)activeTrack->mRsmpOutBuffer, framesOut);
} else {
ditherAndClamp((int32_t *)activeTrack->mSink.raw,
activeTrack->mRsmpOutBuffer, framesOut);
}
// now done with mRsmpOutBuffer } if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) {
overrun = OVERRUN_FALSE;
} if (activeTrack->mFramesToDrop == 0) {
if (framesOut > 0) {
activeTrack->mSink.frameCount = framesOut;
activeTrack->releaseBuffer(&activeTrack->mSink);
}
} else {
// FIXME could do a partial drop of framesOut
if (activeTrack->mFramesToDrop > 0) {
activeTrack->mFramesToDrop -= framesOut;
if (activeTrack->mFramesToDrop <= 0) {
activeTrack->clearSyncStartEvent();
}
} else {
activeTrack->mFramesToDrop += framesOut;
if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 ||
activeTrack->mSyncStartEvent->isCancelled()) {
ALOGW("Synced record %s, session %d, trigger session %d",
(activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled",
activeTrack->sessionId(),
(activeTrack->mSyncStartEvent != 0) ?
activeTrack->mSyncStartEvent->triggerSession() : 0);
activeTrack->clearSyncStartEvent();
}
}
} if (framesOut == 0) {
break;
}
}
ALOGE("pngcui - end for(;;)"); switch (overrun) {
case OVERRUN_TRUE:
// client isn't retrieving buffers fast enough
if (!activeTrack->setOverflow()) {
nsecs_t now = systemTime();
// FIXME should lastWarning per track?
if ((now - lastWarning) > kWarningThrottleNs) {
ALOGW("RecordThread: buffer overflow");
lastWarning = now;
}
}
break;
case OVERRUN_FALSE:
activeTrack->clearOverflow();
break;
case OVERRUN_UNKNOWN:
break;
} } unlock:
// enable changes in effect chain
unlockEffectChains(effectChains);
// effectChains doesn't need to be cleared, since it is cleared by destructor at scope end
} standbyIfNotAlreadyInStandby(); {
Mutex::Autolock _l(mLock);
for (size_t i = 0; i < mTracks.size(); i++) {
sp<RecordTrack> track = mTracks[i];
track->invalidate();
}
mActiveTracks.clear();
mActiveTracksGen++;
mStartStopCond.broadcast();
} releaseWakeLock(); ALOGV("RecordThread %p exiting", this);
return false;
}
在这个线程中主要的工作如下:
这个线程其实早在AudioRecord::set函数中就创建好了的,只是一直阻塞在mWaitWorkCV.wait(mLock);中等待mWaitWorkCV的signal,然后再回到reacquire_wakelock位置;
1.这里注意下,在线程启动的时候,调用了inputStandBy方法,他最终会调用mInput->stream->common.standby,但是in->standby初始值为1,所以在hal层中并没有做实质上的工作;
2.调用processConfigEvents_l函数,判断mConfigEvents中是否有事件,若有则向外发送mConfigEvents中的事件;
3.获取mActiveTracks的个数,回顾一下,在Threads.cpp中调用AudioFlinger::RecordThread::start方法时候,会把创建好的RecordThread加入到mActiveTracks中,所以这里的activeTrack就是之前创建好的RecordThread对象了;
4.既然知道mActiveTracks中已经不为null了,所以for循环就不会再进入到mWaitWorkCV.wait中等待了,要真正的开始干活了;
5.从mActiveTracks获取到在RecordThread的start方法中加进去的activeTrack;
6.还记得之前在RecordThread的start方法的时候留的一个悬念吗,这里就揭晓答案,在add到mActiveTracks的时候,mState为STARTING_1,所以这里肯定是STARTING_1,设置sleepUs为10ms后continue,我们再回到for循环开头,这里usleep了!!!我们之前分析到在RecordThread的start方法跑完了的时候才会更新mState为STARTING_2,所以RecordThread::threadLoop也就是在等待RecordThread的start方法跑完,否则会一直在sleep中;
7.标记doBroadcast为true,mStandby为false,mState为ACTIVE了;
8.把activeTrack对象拷贝到activeTracks集合中,然后调用mStartStopCond.broadcast(),这个广播注意下,肯定在后面的代码中有作用;
9.判断是否有音效控制,如有则对该音效做process_l处理;
10.获取当前AudioBuffer缓冲区的位置rear,这里mRsmpInFrames是mFrameCount * 7,即1024*7,和mRsmpInFramesP2是roundup(mRsmpInFrames),即1024*8;
11.如果是FastCapture方式的话,则调用PipeSource->read去获取数据,否则直接调用HAL层的接口mInput->stream->read获取数据保存到mRsmpInBuffer中,这里采用后者,每次读取2048个字节的数据;
12.如果获取失败的话,强制设置HAL层的standby状态为1,然后休眠一会,再重新开启read,具体操作会在hal层中的read函数中体现;
13.获取AudioBuffer剩下的大小part1,如果剩下的大小不足以存下read出来的数据,则把超出的数据拷贝到AudioBuffer环形缓冲区的头部地方,纠正读取缓冲区末尾的错误;
14.更新rear与mRsmpInRear,向后推进framesRead个单位,而framesRead是bytesRead / mFrameSize,而mFrameSize是audio_stream_in_frame_size获取到的(AudioFlinger::RecordThread::readInputParameters_l()中);
15.调用activeTrack->getNextBuffer获取下一个buffer;
16.判断当前Buffer中已经填充了多少数据:filled,如果已经写满则标记OVERRUN_TRUE,如果framesOut或者framesIn为0(这个framesOut是缓冲区中的available frames,如果缓冲区overrun的话,肯定就是0了),则不继续下面了,直接break;
17.判断是否需要重采样,这里不需要重采样
1.不进行重采样了的话,就直接通过memcpy把mRsmpInBuffer数据拷贝到activeTrack->mSink.i8中,也就是通过getNextBuffer获取到的那块buffer;
2.需要重采样的话,会调用activeTrack->mResampler->resample进行重采样之后,通过ditherAndClamp把数据拷贝到activeTrack->mSink中;
18.判断下当前overrun的状态,如果出现OVERRUN的情况,则调用setOverflow设置mOverflow为true,此时说明应用端读取数据的速度不够快,但是依旧会提供最新的pcm数据,所以如果出现了音频播放时出现跳音,可以排查下这里。
这里分析下第11步:mInput->stream->read以及第15步:activeTrack->getNextBuffer
首先分析下第15步:activeTrack->getNextBuffer,获取下一个buffer,因为我们之前就了解AudioBuffer的管理方式,他有一个环形缓冲区,现在这里就是一直在读取底层的数据,他不会在乎应用层有没有去获取我read出来的数据,所以这里就有一个问题,RecordThread线程read出来的数据是怎么写到缓冲区的呢,和后面的AudioRecord.java中read函数去进行交互的。
frameworks\av\services\audioflinger\Tracks.cpp
status_t AudioFlinger::RecordThread::RecordTrack::getNextBuffer(AudioBufferProvider::Buffer* buffer,
int64_t pts __unused)
{
ServerProxy::Buffer buf;
buf.mFrameCount = buffer->frameCount;
status_t status = mServerProxy->obtainBuffer(&buf);
buffer->frameCount = buf.mFrameCount;
buffer->raw = buf.mRaw;
if (buf.mFrameCount == 0) {
// FIXME also wake futex so that overrun is noticed more quickly
(void) android_atomic_or(CBLK_OVERRUN, &mCblk->mFlags);
}
return status;
}
继续调用mServerProxy->obtainBuffer获取buf,这个raw就是指向缓冲区的那块共享内存,如果缓冲区填满了的话,则设置mCblk->mFlags为CBLK_OVERRUN
frameworks\av\media\libmedia\AudioTrackShared.cpp
status_t ServerProxy::obtainBuffer(Buffer* buffer, bool ackFlush)
{
LOG_ALWAYS_FATAL_IF(buffer == NULL || buffer->mFrameCount == 0);
if (mIsShutdown) {
goto no_init;
}
{
audio_track_cblk_t* cblk = mCblk;
// compute number of frames available to write (AudioTrack) or read (AudioRecord),
// or use previous cached value from framesReady(), with added barrier if it omits.
int32_t front;
int32_t rear;
// See notes on barriers at ClientProxy::obtainBuffer()
if (mIsOut) {
int32_t flush = cblk->u.mStreaming.mFlush;
rear = android_atomic_acquire_load(&cblk->u.mStreaming.mRear);
front = cblk->u.mStreaming.mFront;
if (flush != mFlush) {
// effectively obtain then release whatever is in the buffer
size_t mask = (mFrameCountP2 << 1) - 1;
int32_t newFront = (front & ~mask) | (flush & mask);
ssize_t filled = rear - newFront;
// Rather than shutting down on a corrupt flush, just treat it as a full flush
if (!(0 <= filled && (size_t) filled <= mFrameCount)) {
ALOGE("mFlush %#x -> %#x, front %#x, rear %#x, mask %#x, newFront %#x, filled %d=%#x",
mFlush, flush, front, rear, mask, newFront, filled, filled);
newFront = rear;
}
mFlush = flush;
android_atomic_release_store(newFront, &cblk->u.mStreaming.mFront);
// There is no danger from a false positive, so err on the side of caution
if (true /*front != newFront*/) {
int32_t old = android_atomic_or(CBLK_FUTEX_WAKE, &cblk->mFutex);
if (!(old & CBLK_FUTEX_WAKE)) {
(void) syscall(__NR_futex, &cblk->mFutex,
mClientInServer ? FUTEX_WAKE_PRIVATE : FUTEX_WAKE, 1);
}
}
front = newFront;
}
} else {
front = android_atomic_acquire_load(&cblk->u.mStreaming.mFront);
rear = cblk->u.mStreaming.mRear;
}
ssize_t filled = rear - front;
// pipe should not already be overfull
if (!(0 <= filled && (size_t) filled <= mFrameCount)) {
ALOGE("Shared memory control block is corrupt (filled=%zd); shutting down", filled);
mIsShutdown = true;
}
if (mIsShutdown) {
goto no_init;
}
// don't allow filling pipe beyond the nominal size
size_t availToServer;
if (mIsOut) {
availToServer = filled;
mAvailToClient = mFrameCount - filled;
} else {
availToServer = mFrameCount - filled;
mAvailToClient = filled;
}
// 'availToServer' may be non-contiguous, so return only the first contiguous chunk
size_t part1;
if (mIsOut) {
front &= mFrameCountP2 - 1;
part1 = mFrameCountP2 - front;
} else {
rear &= mFrameCountP2 - 1;
part1 = mFrameCountP2 - rear;
}
if (part1 > availToServer) {
part1 = availToServer;
}
size_t ask = buffer->mFrameCount;
if (part1 > ask) {
part1 = ask;
}
// is assignment redundant in some cases?
buffer->mFrameCount = part1;
buffer->mRaw = part1 > 0 ?
&((char *) mBuffers)[(mIsOut ? front : rear) * mFrameSize] : NULL;
buffer->mNonContig = availToServer - part1;
// After flush(), allow releaseBuffer() on a previously obtained buffer;
// see "Acknowledge any pending flush()" in audioflinger/Tracks.cpp.
if (!ackFlush) {
mUnreleased = part1;
}
return part1 > 0 ? NO_ERROR : WOULD_BLOCK;
}
no_init:
buffer->mFrameCount = 0;
buffer->mRaw = NULL;
buffer->mNonContig = 0;
mUnreleased = 0;
return NO_INIT;
}
这个函数中主要的工作如下:
1.获取mCblk,这里需要回忆下,mCblk是在AudioRecord::openRecord_l中更新的,即sp<IMemory> iMem通过audioFlinger->openRecord获取到共享内存,然后mCblk=iMem->pointer(),所以实际是在AudioFlinger::openRecord函数中获取到的iMem = cblk = recordTrack->getCblk();
frameworks\av\services\audioflinger\TrackBase.h
sp<IMemory> getCblk() const { return mCblkMemory; }
audio_track_cblk_t* cblk() const { return mCblk; }
sp<IMemory> getBuffers() const { return mBufferMemory; }
2.获取mCblk中的front、rear,然后计算出filled;
3.计算出缓冲区中的available frames,然后保存到mFrameCount中;
4.计算出下一块buf的地址,保存到mRaw中;
这里就完成把read出来的数据写入到相应的共享内存,即环形缓冲区中了。
然后再继续简单分析下第12步:调用HAL层的read函数
hardware\aw\audio\tulip\audio_hw.c
static ssize_t in_read(struct audio_stream_in *stream, void* buffer,
size_t bytes)
{
int ret = 0;
struct sunxi_stream_in *in = (struct sunxi_stream_in *)stream;
struct sunxi_audio_device *adev = in->dev;
size_t frames_rq = bytes / audio_stream_frame_size(&stream->common); if (adev->mode == AUDIO_MODE_IN_CALL) {
memset(buffer, 0, bytes);
} /* acquiring hw device mutex systematically is useful if a low priority thread is waiting
* on the input stream mutex - e.g. executing select_mode() while holding the hw device
* mutex
*/
if (adev->af_capture_flag && adev->PcmManager.BufExist) {
pthread_mutex_lock(&adev->lock);
pthread_mutex_lock(&in->lock);
if (in->standby) {
in->standby = 0;
}
pthread_mutex_unlock(&adev->lock); if (ret < 0)
goto exit;
ret = ReadPcmData(buffer, bytes, &adev->PcmManager); if (ret > 0)
ret = 0; if (ret == 0 && adev->mic_mute)
memset(buffer, 0, bytes); pthread_mutex_unlock(&in->lock);
return bytes;
} pthread_mutex_lock(&adev->lock);
pthread_mutex_lock(&in->lock);
if (in->standby) {
ret = start_input_stream(in);
if (ret == 0)
in->standby = 0;
}
pthread_mutex_unlock(&adev->lock); if (ret < 0)
goto exit; if (in->num_preprocessors != 0) {
ret = read_frames(in, buffer, frames_rq); } else if (in->resampler != NULL) {
ret = read_frames(in, buffer, frames_rq); } else {
ret = pcm_read(in->pcm, buffer, bytes);
} if (ret > 0)
ret = 0; if (ret == 0 && adev->mic_mute)
memset(buffer, 0, bytes); exit:
if (ret < 0)
usleep(bytes * 1000000 / audio_stream_frame_size(&stream->common) /
in_get_sample_rate(&stream->common)); pthread_mutex_unlock(&in->lock);
return bytes;
}
这里就直接调用到了HAL层中的in_read函数,这个函数一般soc厂家不一样,实现也不一样,这里做简要介绍
1.如果当前输入流的standby为true的时候,也就是第一次read时,调用start_input_stream函数去打开mic设备节点;
2.如果stream_in的num_preprocessors或者resampler有数据的时候,则调用read_frames函数获取数据,否则直接调用pcm_read获取。其实他们最终都是调用的pcm_read去获取数据的,这个函数是tinyalsa架构提供的,这个库的实现源码位置:external\tinyalsa\,我们在测试音频的时候一般也是通过这几个程序去测试的;
3.把读取到的数据喂给buffer,最后休息一下;
这里再继续分析下start_input_stream函数
static int start_input_stream(struct sunxi_stream_in *in)
{
int ret = 0;
int in_ajust_rate = 0;
struct sunxi_audio_device *adev = in->dev; adev->active_input = in; F_LOG;
adev->in_device = in->device;
select_device(adev); if (in->need_echo_reference && in->echo_reference == NULL)
in->echo_reference = get_echo_reference(adev,
AUDIO_FORMAT_PCM_16_BIT,
in->config.channels,
in->requested_rate); in_ajust_rate = in->requested_rate;
ALOGD(">>>>>> in_ajust_rate is : %d", in_ajust_rate);
// out/in stream should be both 44.1K serial
switch(CASE_NAME){
case 0 :
case 1 :
in_ajust_rate = SAMPLING_RATE_44K;
if((adev->mode == AUDIO_MODE_IN_CALL) && (adev->out_device == AUDIO_DEVICE_OUT_BLUETOOTH_SCO) ){
in_ajust_rate = SAMPLING_RATE_8K;
}
if((adev->mode == AUDIO_MODE_IN_COMMUNICATION) && (adev->out_device == AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET) ){
in_ajust_rate = SAMPLING_RATE_8K;
}
break;
case 2 :
if(adev->mode == AUDIO_MODE_IN_CALL)
in_ajust_rate = in->requested_rate;
else
in_ajust_rate = SAMPLING_RATE_44K; default :
break; }
if (adev->mode == AUDIO_MODE_IN_CALL)
in->pcm = pcm_open(0, PORT_VIR_CODEC, PCM_IN, &in->config);
else
in->pcm = pcm_open(0, PORT_CODEC, PCM_IN, &in->config); if (!pcm_is_ready(in->pcm)) {
ALOGE("cannot open pcm_in driver: %s", pcm_get_error(in->pcm));
pcm_close(in->pcm);
adev->active_input = NULL;
return -ENOMEM;
} if (in->requested_rate != in->config.rate) {
in->buf_provider.get_next_buffer = get_next_buffer;
in->buf_provider.release_buffer = release_buffer; ret = create_resampler(in->config.rate,
in->requested_rate,
in->config.channels,
RESAMPLER_QUALITY_DEFAULT,
&in->buf_provider,
&in->resampler);
if (ret != 0) {
ALOGE("create in resampler failed, %d -> %d", in->config.rate, in->requested_rate);
ret = -EINVAL;
goto err;
} ALOGV("create in resampler OK, %d -> %d", in->config.rate, in->requested_rate);
}
else
{
ALOGV("do not use in resampler");
} /* if no supported sample rate is available, use the resampler */
if (in->resampler) {
in->resampler->reset(in->resampler);
in->frames_in = 0;
}
PLOGV("audio_hw::read end!!!");
return 0; err:
if (in->resampler) {
release_resampler(in->resampler);
} return -1;
}
这个函数的主要工作包括:
1.调用select_device去选择一个输入设备;
2.调用pcm_open函数打开输入设备的节点;
再继续看下select_device函数
static void select_device(struct sunxi_audio_device *adev)
{
int ret = -1;
int output_device_id = 0;
int input_device_id = 0;
const char *output_route = NULL;
const char *input_route = NULL;
const char *phone_route = NULL;
int earpiece_on=0, headset_on=0, headphone_on=0, bt_on=0, speaker_on=0;
int main_mic_on = 0,sub_mic_on = 0;
int bton_temp = 0; if(!adev->ar)
return; audio_route_reset(adev->ar); audio_route_update_mixer_old_value(adev->ar); if(spk_dul_used)
audio_route_apply_path(adev->ar, "media-speaker-off");
else
audio_route_apply_path(adev->ar, "media-single-speaker-off"); if (adev->mode == AUDIO_MODE_IN_CALL){
if(CASE_NAME <= 0){
ALOGV("%s,PHONE CASE ERR!!!!!!!!!!!!!!!!!!!! line: %d,CASE_NAME:%d", __FUNCTION__, __LINE__,CASE_NAME);
//return CASE_NAME;
}
headset_on = adev->out_device & AUDIO_DEVICE_OUT_WIRED_HEADSET; // hp4p
headphone_on = adev->out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE; // hp3p
speaker_on = adev->out_device & AUDIO_DEVICE_OUT_SPEAKER;
earpiece_on = adev->out_device & AUDIO_DEVICE_OUT_EARPIECE;
bt_on = adev->out_device & AUDIO_DEVICE_OUT_ALL_SCO;
//audio_route_reset(adev->ar);
ALOGV("****LINE:%d,FUNC:%s, headset_on:%d, headphone_on:%d, speaker_on:%d, earpiece_on:%d, bt_on:%d",__LINE__,__FUNCTION__, headphone_on, headphone_on, speaker_on, earpiece_on, bt_on);
if (last_call_path_is_bt && !bt_on) {
end_bt_call(adev);
last_call_path_is_bt = 0;
}
if ((headset_on || headphone_on) && speaker_on){
output_device_id = OUT_DEVICE_SPEAKER_AND_HEADSET;
} else if (earpiece_on) {
F_LOG;
if (NO_EARPIECE)
{
F_LOG;
if(spk_dul_used){
output_device_id = OUT_DEVICE_SPEAKER;
}else{
output_device_id = OUT_DEVICE_SINGLE_SPEAKER;
}
}
else
{F_LOG;
output_device_id = OUT_DEVICE_EARPIECE;
}
} else if (headset_on) {
output_device_id = OUT_DEVICE_HEADSET;
} else if (headphone_on){
output_device_id = OUT_DEVICE_HEADPHONES;
}else if(bt_on){
bton_temp = 1;
//bt_start_call(adev);
//last_call_path_is_bt = 1;
output_device_id = OUT_DEVICE_BT_SCO;
}else if(speaker_on){
if(spk_dul_used){
output_device_id = OUT_DEVICE_SPEAKER;
}else{
output_device_id = OUT_DEVICE_SINGLE_SPEAKER;
}
}
ALOGV("****** output_id is : %d", output_device_id);
phone_route = phone_route_configs[CASE_NAME-1][output_device_id];
set_incall_device(adev);
}
if (adev->active_output) {
ALOGV("active_output, ****LINE:%d,FUNC:%s, adev->out_device:%d",__LINE__,__FUNCTION__, adev->out_device);
headset_on = adev->out_device & AUDIO_DEVICE_OUT_WIRED_HEADSET; // hp4p
headphone_on = adev->out_device & AUDIO_DEVICE_OUT_WIRED_HEADPHONE; // hp3p
speaker_on = adev->out_device & AUDIO_DEVICE_OUT_SPEAKER;
earpiece_on = adev->out_device & AUDIO_DEVICE_OUT_EARPIECE;
bt_on = adev->out_device & AUDIO_DEVICE_OUT_ALL_SCO;
//audio_route_reset(adev->ar);
ALOGV("****LINE:%d,FUNC:%s, headset_on:%d, headphone_on:%d, speaker_on:%d, earpiece_on:%d, bt_on:%d",__LINE__,__FUNCTION__, headset_on, headphone_on, speaker_on, earpiece_on, bt_on);
if ((headset_on || headphone_on) && speaker_on){
output_device_id = OUT_DEVICE_SPEAKER_AND_HEADSET;
} else if (earpiece_on) {
if (NO_EARPIECE){
if(spk_dul_used){
output_device_id = OUT_DEVICE_SPEAKER;
}else{
output_device_id = OUT_DEVICE_SINGLE_SPEAKER;
}
}
else
output_device_id = OUT_DEVICE_EARPIECE;
//output_device_id = OUT_DEVICE_EARPIECE;
} else if (headset_on) {
output_device_id = OUT_DEVICE_HEADSET;
} else if (headphone_on){
output_device_id = OUT_DEVICE_HEADSET;
}else if(bt_on){
output_device_id = OUT_DEVICE_BT_SCO;
}else if(speaker_on){
if(spk_dul_used){
output_device_id = OUT_DEVICE_SPEAKER;
}else{
output_device_id = OUT_DEVICE_SINGLE_SPEAKER;
}
}
ALOGV("****LINE:%d,FUNC:%s, output_device_id:%d",__LINE__,__FUNCTION__, output_device_id);
switch (adev->mode){
case AUDIO_MODE_NORMAL:
ALOGV("NORMAL mode, ****LINE:%d,FUNC:%s, adev->out_device:%d",__LINE__,__FUNCTION__, adev->out_device);
#if 0
if(sysopen_music())
output_device_id = OUT_DEVICE_HEADSET;
else
output_device_id = OUT_DEVICE_SPEAKER;
//output_device_id = OUT_DEVICE_HEADSET;
#endif
output_route = normal_route_configs[output_device_id];
break;
case AUDIO_MODE_RINGTONE:
ALOGV("RINGTONE mode, ****LINE:%d,FUNC:%s, adev->out_device:%d",__LINE__,__FUNCTION__, adev->out_device);
output_route = ringtone_route_configs[output_device_id];
break;
case AUDIO_MODE_FM:
break;
case AUDIO_MODE_MODE_FACTORY_TEST:
break;
case AUDIO_MODE_IN_CALL:
ALOGV("IN_CALL mode, ****LINE:%d,FUNC:%s, adev->out_device:%d",__LINE__,__FUNCTION__, adev->out_device);
output_route = phone_keytone_route_configs[CASE_NAME-1][output_device_id];
break;
case AUDIO_MODE_IN_COMMUNICATION:
output_route = normal_route_configs[output_device_id];
F_LOG;
if (output_device_id == OUT_DEVICE_BT_SCO && !last_communication_is_bt) {
F_LOG;
/* Open modem PCM channels */
if (adev->pcm_modem_dl == NULL) {
adev->pcm_modem_dl = pcm_open(0, 4, PCM_OUT, &pcm_config_vx);
if (!pcm_is_ready(adev->pcm_modem_dl)) {
ALOGE("cannot open PCM modem DL stream: %s", pcm_get_error(adev->pcm_modem_dl));
//goto err_open_dl;
}
}
if (adev->pcm_modem_ul == NULL) {
adev->pcm_modem_ul = pcm_open(0, 4, PCM_IN, &pcm_config_vx);
if (!pcm_is_ready(adev->pcm_modem_ul)) {
ALOGE("cannot open PCM modem UL stream: %s", pcm_get_error(adev->pcm_modem_ul));
//goto err_open_ul;
}
}
/* Open bt PCM channels */
if (adev->pcm_bt_dl == NULL) {
adev->pcm_bt_dl = pcm_open(0, PORT_bt, PCM_OUT, &pcm_config_vx);
if (!pcm_is_ready(adev->pcm_bt_dl)) {
ALOGE("cannot open PCM bt DL stream: %s", pcm_get_error(adev->pcm_bt_dl));
//goto err_open_bt_dl;
}
}
if (adev->pcm_bt_ul == NULL) {
adev->pcm_bt_ul = pcm_open(0, PORT_bt, PCM_IN, &pcm_config_vx);
if (!pcm_is_ready(adev->pcm_bt_ul)) {
ALOGE("cannot open PCM bt UL stream: %s", pcm_get_error(adev->pcm_bt_ul));
//goto err_open_bt_ul;
}
}
pcm_start(adev->pcm_modem_dl);
pcm_start(adev->pcm_modem_ul);
pcm_start(adev->pcm_bt_dl);
pcm_start(adev->pcm_bt_ul);
last_communication_is_bt = true; }
break;
default:
break;
} }
if (adev->active_input) {
if(adev->out_device & AUDIO_DEVICE_OUT_ALL_SCO){
adev->in_device = AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET;
}
int bt_on = adev->in_device & AUDIO_DEVICE_IN_ALL_SCO;
ALOGV("record,****LINE:%d,FUNC:%s, adev->in_device:%x,AUDIO_DEVICE_IN_ALL_SCO:%x",__LINE__,__FUNCTION__, adev->in_device,AUDIO_DEVICE_IN_ALL_SCO);
if (!bt_on) {
if ((adev->mode != AUDIO_MODE_IN_CALL) && (adev->active_input != 0)) {
/* sub mic is used for camcorder or VoIP on speaker phone */
sub_mic_on = (adev->active_input->source == AUDIO_SOURCE_CAMCORDER) ||
((adev->out_device & AUDIO_DEVICE_OUT_SPEAKER) &&
(adev->active_input->source == AUDIO_SOURCE_VOICE_COMMUNICATION));
}
if (!sub_mic_on) {
headset_on = adev->in_device & AUDIO_DEVICE_IN_WIRED_HEADSET;
main_mic_on = adev->in_device & AUDIO_DEVICE_IN_BUILTIN_MIC;
}
}
if (headset_on){
input_device_id = IN_SOURCE_HEADSETMIC;
} else if (main_mic_on) {
input_device_id = IN_SOURCE_MAINMIC;
}else if (bt_on && (adev->mode == AUDIO_MODE_IN_COMMUNICATION || adev->mode == AUDIO_MODE_IN_CALL)) {
input_device_id = IN_SOURCE_BTMIC;
}else{
input_device_id = IN_SOURCE_MAINMIC;
}
ALOGV("fm record,****LINE:%d,FUNC:%s,bt_on:%d,headset_on:%d,main_mic_on;%d,adev->in_device:%x,AUDIO_DEVICE_IN_ALL_SCO:%x",__LINE__,__FUNCTION__,bt_on,headset_on,main_mic_on,adev->in_device,AUDIO_DEVICE_IN_ALL_SCO); if (adev->mode == AUDIO_MODE_IN_CALL) {
input_route = cap_phone_normal_route_configs[CASE_NAME-1][input_device_id];
ALOGV("phone record,****LINE:%d,FUNC:%s, adev->in_device:%x",__LINE__,__FUNCTION__, adev->in_device);
} else if (adev->mode == AUDIO_MODE_FM) {
//fm_record_enable(true);
//fm_record_route(adev->in_device);
ALOGV("fm record,****LINE:%d,FUNC:%s",__LINE__,__FUNCTION__);
} else if (adev->mode == AUDIO_MODE_NORMAL) {//1
if(dmic_used)
input_route = dmic_cap_normal_route_configs[input_device_id];
else
input_route = cap_normal_route_configs[input_device_id];
ALOGV("normal record,****LINE:%d,FUNC:%s,adev->in_device:%d",__LINE__,__FUNCTION__,adev->in_device);
} else if (adev->mode == AUDIO_MODE_IN_COMMUNICATION) {
if(dmic_used)
input_route = dmic_cap_normal_route_configs[input_device_id];
else
input_route = cap_normal_route_configs[input_device_id];
F_LOG;
} }
if (phone_route)
audio_route_apply_path(adev->ar, phone_route);
if (output_route)
audio_route_apply_path(adev->ar, output_route);
if (input_route)
audio_route_apply_path(adev->ar, input_route);
audio_route_update_mixer(adev->ar);
if (adev->mode == AUDIO_MODE_IN_CALL ){
if(bton_temp && last_call_path_is_bt == 0){
bt_start_call(adev);
last_call_path_is_bt = 1;
}
}
}
所以说,我们如果需要修改输入设备的时候,可以在这个函数中根据相应的参数去更改,同样,对于其他方案来说,也是可以参考这一套方法去实现的。
具体获取pcm数据的方法介绍到这里,总结下RecordThread线程的作用:这个线程中,就会真正去获取pcm数据,更新缓冲区中的数据,判断当前是否处于overrun的状态等等。
总结:
在startRecording函数中,他建立起了录音通道路由route,并且开启了应用层的录音线程,并把录音数据从驱动中读取到AudioBuffer环形缓冲区来。此时录音设备节点已经被open了,并开始read数据了
由于作者内功有限,若文章中存在错误或不足的地方,还请给位大佬指出,不胜感激!
(三)Audio子系统之AudioRecord.startRecording的更多相关文章
- (四)Audio子系统之AudioRecord.read
在上一篇文章<(三)Audio子系统之AudioRecord.startRecording>中已经介绍了AudioRecord如何开始录制音频,接下来,继续分析AudioRecord方 ...
- (五)Audio子系统之AudioRecord.stop
在上一篇文章<(四)Audio子系统之AudioRecord.read>中已经介绍了AudioRecord如何获取音频数据,接下来,继续分析AudioRecord方法中的stop的实现 函 ...
- (六)Audio子系统之AudioRecord.release
在上一篇文章<(五)Audio子系统之AudioRecord.stop>中已经介绍了AudioRecord如何暂停录制,接下来,继续分析AudioRecord方法中的release的实 ...
- (一)Audio子系统之AudioRecord.getMinBufferSize
在文章<基于Allwinner的Audio子系统分析(Android-5.1)>中已经介绍了Audio的系统架构以及应用层调用的流程,接下来,继续分析AudioRecorder方法中的ge ...
- (二)Audio子系统之new AudioRecord()
在上一篇文章<(一)Audio子系统之AudioRecord.getMinBufferSize>中已经介绍了AudioRecord如何获取最小缓冲区大小,接下来,继续分析AudioReco ...
- (二)Audio子系统之new AudioRecord()(Android4.4)
在上一篇文章<(一)Audio子系统之AudioRecord.getMinBufferSize>中已经介绍了AudioRecord如何获取最小缓冲区大小,接下来,继续分析AudioReco ...
- 基于Allwinner的Audio子系统分析(Android-5.1)
前言 一直想总结下Audio子系统的博客,但是各种原因(主要还是自己懒>_<),一直拖到现在才开始重新整理,期间看过H8(Android-4.4),T3(Android-4.4),A64( ...
- [置顶] 我的Android进阶之旅------>Android解决异常: startRecording() called on an uninitialized AudioRecord.
今天使用AudioRecord进行录音操作时候,报了下面的异常. E/AndroidRuntime(22775): java.lang.IllegalStateException: startReco ...
- Android 4.4KitKat AudioRecord 流程分析
Android是架构分为三层: 底层 Linux Kernel 中间层 主要由C++实现 (Android 60%源码都是C++实现) 应用层 主要由JAVA开发的应用程序 应用程序执行 ...
随机推荐
- Java操作HDFS代码样例
代码在GitHub上. 包括如下几种样例代码: 新建文件夹 删除文件/文件夹 重命名文件/文件夹 查看指定路径下的所有文件 新建文件 读文件 写文件 下载文件至本地 上传本地文件 https://gi ...
- kbmMWtable for XE5 接近尾声
为了支持多平台开发的delphi XE5,kbmmwtable 做了非常大的改动. 目前已经可以在ios 和android 上建立和查询数据表了,但是众说周知,在ios 和android 上 使用Li ...
- JSP中的一个树型结构
看方力勋的javaWeb,采用左右值来表示树型结构(就是俺门的多级分类)表结构 页面代码 <%@ page language="java" import="java ...
- tomcat服务器输入localhost可以访问,ip无法访问解决办法
最近在开发项目中,遇到的一个问题是: 在 tomcat中发布一个web项目,但是发布成功后,只能用http://localhost:8080/fm访问项目,不能用 http://127.0.0.1:8 ...
- ScreenCapture手动卸载教程-Xproer.ScreenCapture
此教程包含WindowsXP,Windows7(x86) ,Windows7(x64),Firefox,Chrome卸载教程. 1.1. 手动卸载控件-Windows XP 主要步骤如下: 1.关闭所 ...
- (最小生成树)Eddy's picture -- hdu -- 1162
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1162 Time Limit: 2000/1000 MS (Java/Others) Memory ...
- mysql 统计一个字符在字符串中出现的次数
CREATE FUNCTION `str_pcount`(str varchar(255),p varchar(255)) RETURNS int(11)BEGIN #统计一个字符在字符串中出 ...
- Spring+shiro配置JSP权限标签+角色标签+缓存
Spring+shiro,让shiro管理所有权限,特别是实现jsp页面中的权限点标签,每次打开页面需要读取数据库看权限,这样的方式对数据库压力太大,使用缓存就能极大减少数据库访问量. 下面记录下sh ...
- Linux Socket - 内核非阻塞功能
select 函数 int select(int maxfdp,fd_set *readfds,fd_set *writefds,fd_set *errorfds,struct timeval*tim ...
- shell中调用jenkins API批量运行历史任务
shell中调用jenkins API批量运行jenkins带参数的任务: #!/bin/sh #startdate=20150127 startdate=20150201 while [ " ...