BZOJ - 2500 树形DP乱搞
题意:给出一棵树,两个给给的人在第\(i\)天会从节点\(i\)沿着最长路径走,求最长的连续天数\([L,R]\)使得\([L,R]\)为起点的最长路径极差不超过m
求\(1\)到\(n\)的最长路经可用树形DP求解,
设\(f[i]\):\(i\)的子树下到\(i\)的最远距离
\(g[i]\):\(i\)子树下除了\(f[i]\)子树以外的最远距离
\(h[i]\):除了\(i\)子树以外到\(i\)的最远距离
\(h[i]\)从父到儿子的转移需要判断\(i\)到底是\(fa\)的最远距离所在边还是次远距离所在边(可相等),还有直接来自父亲以上\(h[fa]\)的转移
搞完后求极差就用二分+RMQ强行求出来,注意初始化需要f和h的对比
题目简单但要细心
#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define fastIO ios::sync_with_stdio(0);cin.tie(0);cout.tie(0)
#define println(x) printf("%lld\n",(ll)(x))
using namespace std;
typedef long long ll;
const int MAXN = 1e6+11;
const int MOD = 142857;
const int INF = 1<<30;
int to[MAXN<<1],nxt[MAXN<<1],head[MAXN],tot;
int cost[MAXN<<1];
int n,m;
void init(int n){memset(head,-1,(n+2)*sizeof(int)),tot=0;}
void add(int u,int v,ll w){
to[tot]=v;
cost[tot]=w;
nxt[tot]=head[u];
head[u]=tot++;
}
int f[MAXN],g[MAXN],h[MAXN];
int mx[MAXN][22],mn[MAXN][22];
void DP0(int u,int fa){
f[u]=g[u]=h[u]=0;
for(int i=head[u];~i;i=nxt[i]){
int v=to[i]; ll w=cost[i];
if(v==fa) continue;
DP0(v,u);
if(f[v]+w>f[u]){
g[u]=f[u]; //次长子树
f[u]=f[v]+w; //最长子树
}else if(f[v]+w>g[u]){
g[u]=f[v]+w;
}
}
}
void DP1(int u,int fa){
for(int i=head[u];~i;i=nxt[i]){
int v=to[i]; ll w=cost[i];
if(v==fa) continue;
if(f[u]-w==f[v]) h[v]=max(h[u]+w,g[u]+w);//本身v作为儿子是f[u]的最大值,那就从u的次大子树中转移
else h[v]=max(h[u]+w,f[u]+w);
DP1(v,u);
}
}
ll C(int lo,int hi){
int k=log2(hi-lo+1);
return max(mx[lo][k],mx[hi-(1<<k)+1][k])
-min(mn[lo][k],mn[hi-(1<<k)+1][k]);
}
int gao(int st){
int lo=st,hi=n;
while(lo<hi){
int mid=lo+(hi-lo+1)/2;
if(C(st,mid)<=m) lo=mid;
else hi=mid-1;
}
return C(st,lo)?lo:lo-1;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("stdin.txt","r",stdin);
#endif
while(~scanf("%d%d",&n,&m)){
init(n);
for(int i=2;i<=n;i++){
int fi;ll di;
scanf("%d%lld",&fi,&di);
add(i,fi,di);
add(fi,i,di);
}
DP0(1,-1);
DP1(1,-1);
for(int i=1;i<=n;i++){
mx[i][0]=mn[i][0]=max(f[i],h[i]);//f[]只考虑子树内,h[]只考虑子树外
}
int t=log2(n);
for(int i=1;i<=t;i++){
for(int j=1;j<=n;j++){
mx[j][i]=max(mx[j][i-1],mx[j+(1<<i-1)][i-1]);
mn[j][i]=min(mn[j][i-1],mn[j+(1<<i-1)][i-1]);
}
}
int ans=0;
for(int i=1;i<=n;i++){
int hi=gao(i);
ans=max(ans,hi-i+1);
}
println(ans);
}
return 0;
}
BZOJ - 2500 树形DP乱搞的更多相关文章
- Playrix Codescapes Cup (Codeforces Round #413, rated, Div. 1 + Div. 2)(A.暴力,B.优先队列,C.dp乱搞)
A. Carrot Cakes time limit per test:1 second memory limit per test:256 megabytes input:standard inpu ...
- 2016 10 28考试 dp 乱搞 树状数组
2016 10 28 考试 时间 7:50 AM to 11:15 AM 下载链接: 试题 考试包 这次考试对自己的表现非常不满意!! T1看出来是dp题目,但是在考试过程中并没有推出转移方程,考虑了 ...
- BZOJ 1040 树形DP+环套树
就是有n个点n条边,那么有且只有一个环那么用Dfs把在环上的两个点找到.然后拆开,从这条个点分别作树形Dp即可. #include <cstdio> #include <cstrin ...
- BZOJ 4033 树形DP
http://blog.csdn.net/mirrorgray/article/details/51123741 安利队长blog- 树形dp吧,状态挺显然的,dp[x][j]表示以x为根的子树中,选 ...
- BZOJ 4987 (树形DP)
###题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4987 ###分析 先考虑贪心,显然k个节点形成一棵树 求出树的直径,显然直径应该只被经 ...
- bzoj 3573: [Hnoi2014]米特运输【树形dp+瞎搞】
阅读理解题,题意是以1为根的有根树,每个点有点权,求修改最少点权能使每个点的权值等于其所有子节点权值之和并且每个点的所有子节点权值相等的个数 然后就比较简单了,就是有个技巧是数太大,需要对所有操作都取 ...
- HZOJ 20190727 T2 单(树上dp+乱搞?+乱推式子?+dfs?)
考试T2,考试时想到了40pts解法,即对于求b数组,随便瞎搞一下就oxxk,求a的话,很明显的高斯消元,但考试时不会打+没开double挂成10pts(我真sb),感觉考试策略还是不够成熟,而且感觉 ...
- bzoj 2217 [Poi2011]Lollipop 乱搞 贪心
2217: [Poi2011]Lollipop Time Limit: 15 Sec Memory Limit: 64 MBSec Special JudgeSubmit: 383 Solved ...
- [BZOJ4011][HNOI2015]落忆枫音-[dp乱搞+拓扑排序]
Description 传送门 Solution 假如我们的图为DAG图,总方案数ans为每个点的入度In相乘(不算1号点).(等同于在每个点的入边选一条边,最后一定构成一棵树). 然而如果加了边x- ...
随机推荐
- Java Thread系列(一)线程创建
Java Thread系列(一)线程创建 Java 中创建线程主要有三种方式:继承 Thread.实现 Runnable 接口.使用 ExecutorService.Callable.Future 实 ...
- Java程序设计11——GUI设计与事件处理B
4 Java事件模型的流程 为了使图形界面能够接收用户的操作,必须给各个组件加上事件处理机制. 在事件处理的过程中,主要涉及3类对象: 1.Event Source(事件源):事件发生的场所,通常就是 ...
- 团队作业7——alpha阶段之事后诸葛亮分析
事后诸葛亮分析 1. 设想和目标 1.1 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 解决查询物流信息步骤繁琐的问题.定义还算清楚.典型用户主要针对一些不熟悉淘 ...
- unidac 访问sql server 字符查询参数失效问题及解决办法
在帮朋友调试kbmmw 服务器的时候,发现用uindac 访问sql server作为后台时,碰见一个问题. 具体如下: cx.Close; cx.sql.add('select * from T w ...
- 给力分享新的ORM => Dapper( 转)
出处:http://www.cnblogs.com/sunjie9606/archive/2011/09/16/2178897.html 最近一直很痛苦,想选一个好点的ORM来做项目,实在没遇到好的. ...
- Spring源码解析 - ListableBeanFactory
Extension of the {@link BeanFactory} interface to be implemented by bean factories that can enumerat ...
- (并查集 带关系)Find them, Catch them -- poj -- 1703
链接: http://poj.org/problem?id=1703 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3676 ...
- Python学习-9.Python函数定义
先定义一个最基本的函数作为例子: def Print(msg): print(msg) 函数名为Print,参数有一个,为msg,函数体调用print系统函数,输出msg. 接下来就是可变参数,这个特 ...
- .NET框架源码解读之SSCLI编译过程简介
前文演示了编译SSCLI最简便的方法(在Windows下): 在“Visual Studio 2005 Command Prompt”下,进入SSCLI的根目录: 运行 env.bat 脚本准备环境: ...
- linux学习之用户的切换
普通用户: 输入su 用户名,点击Enter Root用户: 输入su root,点击Enter 输入登录密码,点击Enter