Spark Streaming使用Kafka保证数据零丢失
来自: https://community.qingcloud.com/topic/344/spark-streaming使用kafka保证数据零丢失
spark streaming从1.2开始提供了数据的零丢失,想享受这个特性,需要满足如下条件:
数据输入需要可靠的sources和可靠的receivers
应用metadata必须通过应用driver checkpoint
WAL(write ahead log)
可靠的sources和receivers
spark streaming可以通过多种方式作为数据sources(包括kafka),输入数据通过receivers接收,通过replication存储于spark中(为了faultolerance,默认复制到两个spark executors),如果数据复制完成,receivers可以知道(例如kafka中更新offsets到zookeeper中)。这样当receivers在接收数据过程中crash掉,不会有数据丢失,receivers没有复制的数据,当receiver恢复后重新接收。
metadata checkpoint
可靠的sources和receivers,可以使数据在receivers失败后恢复,然而在driver失败后恢复是比较复杂的,一种方法是通过checkpoint metadata到HDFS或者S3。metadata包括:
- configuration
- code
- 一些排队等待处理但没有完成的RDD(仅仅是metadata,而不是data)
这样当driver失败时,可以通过metadata checkpoint,重构应用程序并知道执行到那个地方。
数据可能丢失的场景
可靠的sources和receivers,以及metadata checkpoint也不可以保证数据的不丢失,例如:
- 两个executor得到计算数据,并保存在他们的内存中
- receivers知道数据已经输入
- executors开始计算数据
- driver突然失败
- driver失败,那么executors都会被kill掉
- 因为executor被kill掉,那么他们内存中得数据都会丢失,但是这些数据不再被处理
- executor中的数据不可恢复
WAL
为了避免上面情景的出现,spark streaming 1.2引入了WAL。所有接收的数据通过receivers写入HDFS或者S3中checkpoint目录,这样当driver失败后,executor中数据丢失后,可以通过checkpoint恢复。
At-Least-Once
尽管WAL可以保证数据零丢失,但是不能保证exactly-once,例如下面场景:
Receivers接收完数据并保存到HDFS或S3
在更新offset前,receivers失败了
Spark Streaming以为数据接收成功,但是Kafka以为数据没有接收成功,因为offset没有更新到zookeeper
随后receiver恢复了
从WAL可以读取的数据重新消费一次,因为使用的kafka High-Level消费API,从zookeeper中保存的offsets开始消费
WAL的缺点
通过上面描述,WAL有两个缺点:
- 降低了receivers的性能,因为数据还要存储到HDFS等分布式文件系统
- 对于一些resources,可能存在重复的数据,比如Kafka,在Kafka中存在一份数据,在Spark Streaming也存在一份(以WAL的形式存储在hadoop API兼容的文件系统中)
Kafka direct API
为了WAL的性能损失和exactly-once,spark streaming1.3中使用Kafka direct API。非常巧妙,Spark driver计算下个batch的offsets,指导executor消费对应的topics和partitions。消费Kafka消息,就像消费文件系统文件一样。
不再需要kafka receivers,executor直接通过Kafka API消费数据
WAL不再需要,如果从失败恢复,可以重新消费
exactly-once得到了保证,不会再从WAL中重复读取数据
总结
主要说的是spark streaming通过各种方式来保证数据不丢失,并保证exactly-once,每个版本都是spark streaming越来越稳定,越来越向生产环境使用发展。
参考
spark-streaming
Recent Evolution of Zero Data Loss Guarantee in Spark Streaming With Kafka
原文链接: https://github.com/jacksu/utils4s/blob/master/spark-knowledge/md/spark_streaming使用kafka保证数据零丢失.md
Xuanwo@QingCloud
Spark Streaming使用Kafka保证数据零丢失的更多相关文章
- Spark Streaming的容错和数据无丢失机制
spark是迭代式的内存计算框架,具有很好的高可用性.sparkStreaming作为其模块之一,常被用于进行实时的流式计算.实时的流式处理系统必须是7*24运行的,同时可以从各种各样的系统错误中恢复 ...
- Spark Streaming和Kafka整合保证数据零丢失
当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源 ...
- Spark Streaming和Kafka整合是如何保证数据零丢失
转载:https://www.iteblog.com/archives/1591.html 当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢 ...
- 160728、Spark Streaming kafka 实现数据零丢失的几种方式
定义 问题开始之前先解释下流处理中的一些概念: At most once - 每条数据最多被处理一次(0次或1次) At least once - 每条数据最少被处理一次 (1次或更多) Exactl ...
- spark streaming集成kafka接收数据的方式
spark streaming是以batch的方式来消费,strom是准实时一条一条的消费.当然也可以使用trident和tick的方式来实现batch消费(官方叫做mini batch).效率嘛,有 ...
- kafka保证数据不丢失机制
kafka如何保证数据的不丢失 1.生产者如何保证数据的不丢失:消息的确认机制,使用ack机制我们可以配置我们的消息不丢失机制为-1,保证我们的partition的leader与follower都保存 ...
- Spark Streaming、Kafka结合Spark JDBC External DataSouces处理案例
场景:使用Spark Streaming接收Kafka发送过来的数据与关系型数据库中的表进行相关的查询操作: Kafka发送过来的数据格式为:id.name.cityId,分隔符为tab zhangs ...
- Spark streaming消费Kafka的正确姿势
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不 ...
- Spark Streaming消费Kafka Direct方式数据零丢失实现
使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以 ...
随机推荐
- 解决openssh TimeOut
SSH Client:ServerAliveInterval 100 SSH server:ClientAliveInterval 30TCPKeepAlive yes ClientAliveCoun ...
- linux安装JDK环境,JDK6.0即java 1.6.0
下载 (1)更改权限:# chmod 755 jdk-1.6.0_23-linux-i586.rpm.bin 执行安装:# ./ jdk-1.6.0_23-linux-i586.rpm.bin 此步完 ...
- CitrixSmartAuditor安装报错解决方法
报错1:安装过程中报错 解决方法: SQLServer的配置: http://www.cnblogs.com/weizhengLoveMayDay/p/3267756.html 报错2:无法连接到Sm ...
- 微博混合云DCP:极端流量下的峰值应对与架构挑战
摘要: 在2016杭州云栖大会的“开发者技术峰会”上,来自新浪微博的资深运维架构师王关胜带来题为<微博混合云DCP:极端流量下的峰值应对与架构挑战>的精彩分享,分享中他从微博业务背景及峰值 ...
- 【LeetCode】154. Find Minimum in Rotated Sorted Array II (3 solutions)
Find Minimum in Rotated Sorted Array II Follow up for "Find Minimum in Rotated Sorted Array&quo ...
- [Python]项目打包:5步将py文件打包成exe文件(转)
1.下载pyinstaller并解压(可以去官网下载最新版): http://nchc.dl.sourceforge.net/project/pyinstaller/2.0/pyinstaller-2 ...
- Linux命令-文件系统常用命令:df,du,fsck,dumpe2fs
df -h 人性化显示文件系统的分区信息 注意:在linux中目录也是文件,不要混淆下面的目录文件说法. 传统方式查看文件大小可以使用:ll -h /目录/文件名,就可以看到文件的大小,但是如果你想看 ...
- Python学习笔记020——数据库知识概述
数据库概述 1 提供数据库的软件都有哪些 MySQL.SQL_Server.Oracle.DB2.Mariadb.MongoDB ... (1)是否开源 开源软件:MySQL.Mariadb.Mong ...
- ADF_ADF Framework基本概念(概念)
2014-01-01 Created By BaoXinjian
- 上传一个 游戏server架构图