【NOIP2014】解方程
题目描述
已知多项式方程
\]
求这个方程在\([1,m]\)内的整数解(\(n\)和\(m\)均为正整数)。
输入输出格式
输入格式
共 n + 2n+2 行。
第一行包含 22 个整数 \(n\), \(m\) ,每两个整数之间用一个空格隔开。
接下来的 n+1n+1 行每行包含一个整数,依次为$ a_0,a_1,a_2\ldots a_n $
输出格式
第一行输出方程在 \([1,m]\) 内的整数解的个数。
接下来每行一个整数,按照从小到大的顺序依次输出方程在 \([1,m]\)内的一个整数解。
说明
对于 \(30\%\) 的数据:\(0<n\le 2\),\(|a_i|\le 100\),\(a_n≠0\),\(m<100\)。
对于 \(50\%\) 的数据:\(0<n\le 100\),\(|a_i|\le 10^{100}\),\(a_n≠0\),\(m<100\)。
对于 \(70\%\) 的数据:\(0<n\le 100\),\(|a_i|\le 10^{10000}\),\(a_n≠0\),\(m<10^4\)。
对于 \(100\%\) 的数据:\(0<n\le 100\),\(|a_i|\le 10^{10000}\),\(a_n≠0\),\(m<10^6\)。
题解
对于解方程,除了靠我机智的人脑我想不出除了暴力枚举解之外更好的方法了,但是,如果我们每次都进行枚举解,如何check呢?带回去算,哇,这个计算量我也是很震惊的,我们当然不能按着他的顺序来算啦,我们可以用秦九韶算法。
秦九韶算法
我们知道并没有直接求解高阶方程的公式,所以我们就没有办法直接求出我们所需要的答案,那么面对这个高阶多项式我们应该真么办呢?根据我们的观察,我们发现有下述的等价变形:
\]
我们从最里面的括号算起,我们会发现假设我们已经算出了第\(i\)个括号中的答案是\(ans_i\),我们再算第\(i + 1\)个括号时是这样算的:\(a_{i-1}+ans_ix\)其实我们数算出的\(ans_i\)就成了下一个括号中\(x\)的系数了。这样的话我们就可以利用一个\([1,n]\)的for循环搞定了,模板长成这个样子:
xs = 0;
for(int i = n; i >= 1; -- i)
xs = ((xs + a[i]) % mod * x)% mod;
仅仅知道这个离AC这道题还有一段距离,我们来看一下数据,哇这个范围是要写高精的吗???,显然,高精这种麻烦的东西我们要放在最后来考虑。我们观察到,如果有\(f(x)mod \ \ p=0\)那么\(f(xmod\ \ p) mod\ \ p= 0\)
那么我们只用在每次计算之后进行一个取模操作就行了,为了避免冲突,我们选取一个较大的质数作为我们的模数(我选的是\(10^9+7\)),在输入的过程中我们也可以一边输入一边对输入的数进行取模,这个改一下读入优化就可以实现了。
long long read()
{
long long x = 0; int w = 0; char ch= getchar();
for(;!isdigit(ch); w |= (ch == '-'),ch = getchar());
for(;isdigit(ch);x = ((x << 1) + (x<< 3)) % mod + (ch ^48), ch = getchar());
return w ? -x : x;
}
代码
#include<bits/stdc++.h>
using namespace std;
long long a[105], ans[1000005], xs;
const long long mod = 1e9 + 7;
long long read()
{
long long x = 0; int w = 0; char ch = getchar();
for(;!isdigit(ch); w |= (ch == '-'), ch = getchar());
for(;isdigit(ch);x = ((x << 1) + (x << 3)) % mod + (ch ^ 48), ch = getchar());
return w ? -x : x;
}
int main()
{
int n, cnt = 0;
long long m;
scanf("%d%lld", &n, &m);
for(int i = 0; i <= n; ++ i) a[i] = read(), a[i] = a[i] % mod;
for(long long x = 1; x <= m; ++ x)
{
xs = 0;
for(int i = n; i >= 1; -- i)
xs = ((xs + a[i]) % mod * x) % mod;
if((xs + a[0]) % mod == 0) ans[++ cnt] = x;
}
printf("%d\n", cnt);
for(int i = 1; i <= cnt; ++ i) printf("%d\n", ans[i]);
return 0;
}
【NOIP2014】解方程的更多相关文章
- 【BZOJ】3751: [NOIP2014]解方程【秦九韶公式】【大整数取模技巧】
3751: [NOIP2014]解方程 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4856 Solved: 983[Submit][Status ...
- BZOJ 3751: [NOIP2014]解方程 数学
3751: [NOIP2014]解方程 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=3751 Description 已知多项式方程: ...
- LOJ2503 NOIP2014 解方程 【HASH】
LOJ2503 NOIP2014 解方程 LINK 题目大意就是给你一个方程,让你求[1,m]中的解,其中系数非常大 看到是提高T3还是解方程就以为是神仙数学题 后来研究了一下高精之类的算法发现过不了 ...
- bzoj 3751: [NOIP2014]解方程 同余系枚举
3.解方程(equation.cpp/c/pas)[问题描述]已知多项式方程:a ! + a ! x + a ! x ! + ⋯ + a ! x ! = 0求这个方程在[1, m]内的整数解(n 和 ...
- [NOIP2014]解方程
3732 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 题目描述 Description 输入描述 Input Descrip ...
- [BZOJ3751][NOIP2014] 解方程
Description 已知多项式方程:a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个 ...
- NOIP2014解方程
题目:求一个n次整系数方程在1-m内的整数解 n<=100 系数<=10000位 m<=100W 题解:最暴力的想法是枚举x,带入求值看是否为0. 这样涉及到高精度乘高精度,高精度 ...
- [BZOJ3751] [NOIP2014] 解方程 (数学)
Description 已知多项式方程:$a_0+a_1*x+a_2*x^2+...+a_n*x^n=0$ 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m ...
- bzoj 3751: [NOIP2014]解方程
Description 已知多项式方程: a0+a1x+a2x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 解题报告: 这题比较诡,看到高精度做不了,就要想到 ...
- 【bzoj3751】[NOIP2014]解方程 数论
题目描述 已知多项式方程: a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). 输入 第一行包含2个整数n.m,每两个整数之间用一个空格隔开 ...
随机推荐
- 简单明了区分escape、encodeURI和encodeURIComponent(转)
一.前言 讲这3个方法区别的文章太多了,但是大部分写的都很绕.本文试图从实践角度去讲这3个方法. 二.escape和它们不是同一类 简单来说,escape是对字符串(string)进行编码(而另外两种 ...
- 01 使用JavaScript原生控制div属性
写在前面: 因对前端开发感兴趣,于是自学前端技术,现在已经会HTML.CSS.JavaScript基础技术.但水平处于小白阶段,在网上找一些小项目练练手,促进自己的技术成长.文章记录自己的所思所想,以 ...
- CodeForces 616A(水题)
while(t--) 最后结果t=-1 #include <iostream> #include <string> #include <cstring> #incl ...
- 类库项目如何既能支持netcore2.0,也能支持net4.5
手动更改项目配置 .csporj 中的代码 <TargetFramework>netcoreapp2.</TargetFramework> 改成 <TargetFrame ...
- shutil的一些基本用法
import shutil import time import tarfile # 将文件内容拷贝到另一个文件中 shutil.copyfileobj(open('a1', 'r'), open(' ...
- git杂记-撤销操作
覆盖上一次的提交或重新更新提交说明 $ git commit --amend -m '我再次提交啦,上一次的提交已经不见啦.这是一个危险的操作哦.哈哈,其实并不危险,也是可以数据恢复的啦' 取消已暂存 ...
- 简单的sqlserver批量插入数据easy batch insert data use loop function in sqlserver
--example 1: DECLARE @pid INT,@name NVARCHAR(50),@level INT,@i INT,@column2 INT SET @pid=0 SET @name ...
- No toolchains found in the NDK toolchains folder for ABI with prefix: arm-linux-androideabi
产生背景最近把Android Studio更新到3.0,更新之后出现了build错误:No toolchains found in the NDK toolchains folder for ABI ...
- 毕向东_Java基础视频教程第20天_IO流(7~10)
第20天-07-IO流(递归) package bxd; import java.io.File; public class FileDemo3 { // 非递归打印 public static vo ...
- 两种开源聊天机器人的性能测试(二)——基于tensorflow的chatbot
http://blog.csdn.net/hfutdog/article/details/78155676 开源项目链接:https://github.com/dennybritz/chatbot-r ...