[TJOI2015]线性代数 网络流
题面
题解
先化一波式子:
\]
\]
\]
\]
\]
\]
\]
因此选\(i\)和\(j\)则得到\(B_{ij}\)的贡献,选\(i\)则花费\(C_i\)的代价。
因此我们有如下关系:选\((i, j)\)则必选\(i, j\).
因此建图方式如下:
- 对于每个二元组\((i, j)\),我们连\(s --- > (i, j) : B_{ij}\)
- 对于每个二元组\((i, j)\),我们连\((i, j) ---> i : inf , (i, j) ---> j : inf\)
- 对于每个点\(i\),我们连\(i ---> t : C_i\)
#include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 550
#define ac 1000000
#define maxn 3000000
#define inf 1000000000
//#define D printf("in line %d\n", __LINE__);
int n, s, t, x, addflow, ans, all;
int B[AC][AC], C[AC];
int Head[ac], date[maxn], Next[maxn], haveflow[maxn], tot = 1;
int have[ac], good[ac], c[ac], last[ac];
int q[ac], head, tail;
inline int read()
{
int x = 0;char c = getchar();
while(c > '9' || c < '0') c = getchar();
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x;
}
inline void upmin(int &a, int b) {if(b < a) a = b;}
inline void upmax(int &a, int b) {if(b > a) a = b;}
inline void add(int f, int w, int S)
{
date[++ tot] = w, Next[tot] = Head[f], Head[f] = tot, haveflow[tot] = S;
date[++ tot] = f, Next[tot] = Head[w], Head[w] = tot, haveflow[tot] = 0;
//printf("%d --- > %d : %d\n", f, w, S);
}
void bfs()
{
q[++ tail] = t, have[1] = c[t] = 1;
while(head < tail)
{
int x = q[++ head];
for(R i = Head[x]; i; i = Next[i])
{
int now = date[i];
if(!c[now] && haveflow[i ^ 1])
{
++ have[c[now] = c[x] + 1];
q[++ tail] = now;
}
}
}
memcpy(good, Head, sizeof(good));
}
void aru()
{
while(x != s)
{
haveflow[last[x]] -= addflow;
haveflow[last[x] ^ 1] += addflow;
x = date[last[x] ^ 1];
}
ans -= addflow, addflow = inf;
}
void ISAP()
{
bool done = false;
addflow = inf, x = s;
while(c[t] != all + 10)
{
if(x == t) aru();
done = false;
for(R i = good[x]; i; i = Next[i])
{
int now = date[i];
good[x] = i;
if(c[now] == c[x] - 1 && haveflow[i])
{
upmin(addflow, haveflow[i]);
last[now] = i, x = now, done = true;
break;
}
}
if(!done)
{
int go = all + 9;
for(R i = Head[x]; i; i = Next[i])
if(c[date[i]] && haveflow[i]) upmin(go, c[date[i]]);
good[x] = Head[x];
if(!(-- have[c[x]])) break;
have[c[x] = go + 1] ++;
if(x != s) x = date[last[x] ^ 1];
}
}
printf("%d\n", ans);
}
void pre()
{
n = read(), all = n * n + n, s = all + 1, t = s + 1;
for(R i = 1; i <= n; i ++)
for(R j = 1; j <= n; j ++) B[i][j] = read(), ans += B[i][j];
for(R i = 1; i <= n; i ++) C[i] = read();
}
inline int id(int i, int j){return (i - 1) * n + j;}
void build()
{
for(R i = 1; i <= n; i ++)
for(R j = 1; j <= n; j ++)
{
int ID = id(i, j);
add(s, ID, B[i][j]);
add(ID, n * n + i, inf), add(ID, n * n + j, inf);
}
for(R i = 1; i <= n; i ++) add(n * n + i, t, C[i]);
}
int main()
{
// freopen("in.in", "r", stdin);
pre();
build();
bfs();
ISAP();
// fclose(stdin);
return 0;
}
[TJOI2015]线性代数 网络流的更多相关文章
- [TJOI2015]线性代数(网络流)
[TJOI2015]线性代数(最大权闭合子图,网络流) 为了提高智商,ZJY开始学习线性代数.她的小伙伴菠萝给她出了这样一个问题:给定一个n*n的矩阵B和一个1×n的矩阵C.求出一个1×n的01矩阵A ...
- 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1368 Solved: 832 Description 给 ...
- bzoj 3996: [TJOI2015]线性代数 [最小割]
3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...
- BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图
BZOJ_3996_[TJOI2015]线性代数_最大权闭合子图 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大. ...
- 【BZOJ3996】[TJOI2015]线性代数(最小割)
[BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...
- 【LG3973】[TJOI2015]线性代数
[LG3973][TJOI2015]线性代数 题面 洛谷 题解 正常解法 一大堆矩阵乘在一起很丑对吧 化一下柿子: \[ D=(A*B-C)*A^T\\ \Leftrightarrow D=\sum_ ...
- [Luogu 3973] TJOI2015 线性代数
[Luogu 3973] TJOI2015 线性代数 这竟然是一道最小割模型. 据说是最大权闭合子图. 先把矩阵式子推出来. 然后,套路建模就好. #include <algorithm> ...
- 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图
[BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...
- 【BZOJ】3996: [TJOI2015]线性代数
题意 给出一个\(N \times N\)的矩阵\(B\)和一个\(1 \times N\)的矩阵\(C\).求出一个\(1 \times N\)的01矩阵\(A\),使得\[ D = ( A * B ...
随机推荐
- java 定义三分钟之前的时间
public String getCurrentTime(){SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss ...
- cogs1439 货车运输
cogs1439 货车运输 一道傻逼板子题. 边一定在最大生成树上,这个可以用消圈证明 然后kruskal跑一遍再搜一遍再建ST表再跑LCA这题就做完了. RT PS.交上去的代码把Kruskal打成 ...
- appium+python自动化☞环境搭建
前言:appium可以说是做app最火的一个自动化框架,它的主要优势是支持android和ios,另外脚本语言也是支持java和Python.略懂Python,所以接下来的教程是 appium+pyt ...
- url乱码问题
//url乱码,有时候要解码2次才能成功 String url=URLDecoder.decode(URLDecoder.decode(returnUrl, "UTF-8"),&q ...
- hdu - 6276,2018CCPC湖南全国邀请赛A题,水题,二分
题意: 求H的最大值, H是指存在H篇论文,这H篇被引用的次数都大于等于H次. 思路:题意得, 最多只有N遍论文,所以H的最大值为N, 常识得知H的最小值为0. 所以H的答案在[0,N]之间,二分 ...
- 阿里与ShopRunner达成协议 联手在国内推出服务
阿里巴巴集团与美国在线零售商 ShopRunner 达成协议,将帮助后者在中国大陆销售商品和履行订单交付产品. ShopRunner 首席战略官菲奥娜·迪亚斯(Fiona Dias)周三接受媒体采访时 ...
- 亚马逊与Twitter携手电子商务
亚马逊(Amazon)与Twitter开展了合作,允许用户以Twitter消息的形式将喜欢的商品发送到购物篮中.这些高科技企业正在想办法把社交媒体和电子商务融为一体. 这一功能旨在将Twitter转变 ...
- 食物链 POJ 1182(种类并查集)
Description 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到 ...
- MYSQL报警:Warning: Using a password on the command line interface can be insecure.
问题描述:执行下面的语句,sql是执行成功了,但是出现了一个报警,报警看上去始终不舒服 mysql -hip -Pport -uuser -ppassword -e "use db;dele ...
- HDU 1277 Nested Dolls
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1677 题意: 玩俄罗斯套娃,问最后至少还剩几个. 题解: 这题可以和拦截导弹做对比,因为这里是二维的 ...