【BZOJ3243】【NOI2013】向量内积(矩阵,数论)
【BZOJ3243】【NOI2013】向量内积(矩阵,数论)
题面
题解
这题好神仙。
首先\(60\)分直接是送的。加点随机之类的可以多得点分。
考虑正解。
我们先考虑一下暴力。
我们把\(n\)个向量拼接在一起,形成一个\(n\times d\)的矩阵。
显然这个矩阵和它的转置矩阵,也就是一个\(d\times n\)的矩阵做乘法,
结果是一个\(n\times n\)的矩阵,第\(i\)行第\(j\)列就是\(i,j\)两个向量的结果。
如果这个矩阵全是\(1\)(除主对角线),那么必定是无解的。
否则我们只需要在这个矩阵上随便找到一个零就好了。
然而这样子和暴力的复杂度是一模一样的。
利用一些随机的性质来优化。
对于任意一个向量,我们考虑前面所有向量和它的内积的和。
首先考虑模\(2\)意义下,结果只有\(0,1\)
如果前面所有的向量和它的内积都是\(1\),那么假设当前是第\(i\)个向量,
必定就有前面所有的内积结果和\(i-1\)同余,那么如果一旦不同余证明有内积为\(0\)
这样子可以很容易被\(hack\),所以我们多算几次,每次随机化一些顺序就好了。
对于模\(3\)意义,结果有\(0,1,2\),如果继续按照之前那么算会错。
考虑内积的平方,这样模之后的结果就只有\(0,1\)了,就和前面是一样的了。
当然了,写的时候全部当做平方算就好了,没有影响的。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 111111
#define ll long long
#define RG register
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,D,K,Vec[MAX][100],p[MAX],c[100][100];
int Calc(int a,int b)
{
int ret=0;
for(int i=0;i<D;++i)ret=(ret+Vec[a][i]*Vec[b][i])%K;
return ret;
}
int Solve(int x)
{
int ret=0;
for(int i=0;i<D;++i)
for(int j=0;j<D;++j)
ret+=c[i][j]*Vec[x][i]*Vec[x][j],c[i][j]+=Vec[x][i]*Vec[x][j];
return ret%K;
}
int main()
{
n=read();D=read();K=read();
for(int i=1;i<=n;++i)
for(int j=0;j<D;++j)Vec[i][j]=read()%K;
for(int i=1;i<=n;++i)p[i]=i;
int Case=5;
while(Case--)
{
random_shuffle(&p[1],&p[n+1]);;memset(c,0,sizeof(c));
for(int i=1;i<=n;++i)
if(Solve(p[i])!=(i-1)%K)
for(int j=1;j<i;++j)
if(Calc(p[i],p[j])%K==0)
{
if(p[i]>p[j])swap(p[i],p[j]);
printf("%d %d\n",p[i],p[j]);
return 0;
}
}
puts("-1");return 0;
}
【BZOJ3243】【NOI2013】向量内积(矩阵,数论)的更多相关文章
- BZOJ3243 NOI2013向量内积(随机化)
考虑奇技淫巧. 首先是k=2.对向量维护一个前缀和,每次将当前向量与前缀和点乘.如果点乘结果不等于i-1&1,说明当前向量至少和之前的某个向量的数量积是2的倍数,暴力找就可以了.当然等于i-1 ...
- BZOJ3243 [Noi2013]向量内积 【乱搞】
题目链接 BZOJ3243 题解 模数只有\(2\)或\(3\),可以大力讨论 如果模数为\(2\),乘积结果只有\(1\)或\(0\) 如果一个向量和前面所有向量乘积都为\(1\),那么其和前面向量 ...
- 【BZOJ-3243】向量内积 随机化 + 矩阵
3243: [Noi2013]向量内积 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1249 Solved: ...
- 【fake题解】[NOI2013]向量内积
[fake题解][NOI2013]向量内积 做法1 大暴力.哪里不会T哪里. 做法2 所有数都%=k不影响结果.(废话 k的取值只有2和3,所以肯定是要分类讨论的.k=2肯定简单些啦. k=2 出现的 ...
- [Noi2013]向量内积
来自FallDream的博客,未经允许,请勿转载,谢谢. 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: $\sum_{i=1 ...
- P1224 [NOI2013]向量内积
传送门 发现这个内积和矩乘有点像,考虑构造一个 $n$ 行 $m$ 列的矩阵 $A$,每一行都是一个题目给定的 $m$ 维向量 设 $B=AA^T$ ,其中 $A^T$ 为 $A$ 的转置矩阵,那么对 ...
- luogu P1224 [NOI2013]向量内积
传送门 挺有意思的一道题 暴力60就是枚举每个向量暴力check,随机选向量就能多骗一些分 然后两个向量内积要模\(k\)为\(0\),那么如果全部不为\(0\)就不合法.先考虑\(k=2\),对于向 ...
- BZOJ3243/UOJ121 [Noi2013]向量内积
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 3243: [Noi2013]向量内积 - BZOJ
Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...
- bzoj 3243: [Noi2013]向量内积
Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...
随机推荐
- 试用一下markdown
1 2 3 4 5 6 Blog
- [css 实践篇]CSS中的尺寸单位
绝对单位 px: Pixel 像素 pt: Points 磅 pc: Picas 派卡 in: Inches 英寸 mm: Millimeter 毫米 cm: Centimeter 厘米 q: Qua ...
- Android开发笔记——以Volley图片加载、缓存、请求及展示为例理解Volley架构设计
Volley是由Google开源的.用于Android平台上的网络通信库.Volley通过优化Android的网络请求流程,形成了以Request-RequestQueue-Response为主线的网 ...
- python全栈开发-面向对象-初识2
python_17_day 今日主要内容: 1.类空间,对象空间,查询顺序. 2.组合. 1.类空间,对象空间,查询顺序. class Person: animal = '高级动物' soul = ' ...
- oss上传文件0字节
最近使用oss上传文件,不同项目中使用的版本也不同,之前的都能正常上传,最近因需要添加ObjectMetaData属性,扩展了一个方法,发现上传的文件始终是0字节的,最终跟源码发现conntentLe ...
- Python接口测试实战5(上) - Git及Jenkins持续集成
如有任何学习问题,可以添加作者微信:lockingfree 课程目录 Python接口测试实战1(上)- 接口测试理论 Python接口测试实战1(下)- 接口测试工具的使用 Python接口测试实战 ...
- Android 测试 之MonkeyRunner
一.什么是MonkeyRunner monkeyrunner工具提供了一个API,使用此API写出的程序可以在Android代码之外控制Android设备和模拟器.通过monkeyrunner,您可以 ...
- Visual Assist 试用期过期怎么办?
Visual Assist 试用期过期怎么办 VS这个强大的编译器常常会配置番茄小助手 Visual Assist,但是有时候试用期会过期,又想免费试用,怎么办呢? 有一个方法可以充值番茄助手的试用期 ...
- K-近邻算法入门
K-近邻算法的直观理解就是:给定一个训练集合,对于新的实例,在训练集合中找到k个与该实例最近的邻居,然后根据“少数服从多数”原则判断该实例归属于哪一类,又称“随大流” K-近邻算法的三大要素:K值得选 ...
- ubuntu 设置全局代理
ubuntu配置shadowsocks全局代理 在mac.window平台下都有shadowsocks客户端,因此这两个平台不叙述太多,现在介绍ubuntu下的配置方法. 1.安装python lin ...