聊聊flink的CsvTableSource
序
本文主要研究一下flink的CsvTableSource
TableSource
flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/TableSource.scala
trait TableSource[T] {
/** Returns the [[TypeInformation]] for the return type of the [[TableSource]].
* The fields of the return type are mapped to the table schema based on their name.
*
* @return The type of the returned [[DataSet]] or [[DataStream]].
*/
def getReturnType: TypeInformation[T]
/**
* Returns the schema of the produced table.
*
* @return The [[TableSchema]] of the produced table.
*/
def getTableSchema: TableSchema
/**
* Describes the table source.
*
* @return A String explaining the [[TableSource]].
*/
def explainSource(): String =
TableConnectorUtil.generateRuntimeName(getClass, getTableSchema.getFieldNames)
}
TableSource定义了三个方法,分别是getReturnType、getTableSchema、explainSource
BatchTableSource
flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/BatchTableSource.scala
trait BatchTableSource[T] extends TableSource[T] {
/**
* Returns the data of the table as a [[DataSet]].
*
* NOTE: This method is for internal use only for defining a [[TableSource]].
* Do not use it in Table API programs.
*/
def getDataSet(execEnv: ExecutionEnvironment): DataSet[T]
}
BatchTableSource继承了TableSource,它定义了getDataSet方法
StreamTableSource
flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/StreamTableSource.scala
trait StreamTableSource[T] extends TableSource[T] {
/**
* Returns the data of the table as a [[DataStream]].
*
* NOTE: This method is for internal use only for defining a [[TableSource]].
* Do not use it in Table API programs.
*/
def getDataStream(execEnv: StreamExecutionEnvironment): DataStream[T]
}
StreamTableSource继承了TableSource,它定义了getDataStream方法
CsvTableSource
flink-table_2.11-1.7.1-sources.jar!/org/apache/flink/table/sources/CsvTableSource.scala
class CsvTableSource private (
private val path: String,
private val fieldNames: Array[String],
private val fieldTypes: Array[TypeInformation[_]],
private val selectedFields: Array[Int],
private val fieldDelim: String,
private val rowDelim: String,
private val quoteCharacter: Character,
private val ignoreFirstLine: Boolean,
private val ignoreComments: String,
private val lenient: Boolean)
extends BatchTableSource[Row]
with StreamTableSource[Row]
with ProjectableTableSource[Row] {
def this(
path: String,
fieldNames: Array[String],
fieldTypes: Array[TypeInformation[_]],
fieldDelim: String = CsvInputFormat.DEFAULT_FIELD_DELIMITER,
rowDelim: String = CsvInputFormat.DEFAULT_LINE_DELIMITER,
quoteCharacter: Character = null,
ignoreFirstLine: Boolean = false,
ignoreComments: String = null,
lenient: Boolean = false)www.michenggw.com = {
this(
path,
fieldNames,
fieldTypes,
fieldTypes.indices.toArray, // initially, all fields are returned
fieldDelim,
rowDelim,
quoteCharacter,
ignoreFirstLine,
ignoreComments,
lenient)
}
def this(path: String, fieldNames: Array[String]www.fengshen157.com/, fieldTypes: Array[TypeInformation[_]]) = {
this(path, fieldNames, fieldTypes, CsvInputFormat.DEFAULT_FIELD_DELIMITER,
CsvInputFormat.DEFAULT_LINE_DELIMITER, null, false, null, false)
}
if (fieldNames.length != fieldTypes.length) {
throw new TableException("Number of field names and field types must be equal.")
}
private val selectedFieldTypes = selectedFields.map(fieldTypes(_))
private val selectedFieldNames = selectedFields.map(fieldNames(_))
private val returnType: RowTypeInfo = new RowTypeInfo(selectedFieldTypes, selectedFieldNames)
override def getDataSet(execEnv: ExecutionEnvironment): DataSet[Row] = {
execEnv.createInput(createCsvInput(), returnType).name(explainSource())
}
/** Returns the [[RowTypeInfo]] for the return type of the [[CsvTableSource]]. */
override def getReturnType: www.leyouzaixian2.com RowTypeInfo = returnType
override def getDataStream(streamExecEnv: StreamExecutionEnvironment): DataStream[Row] = {
streamExecEnv.createInput(createCsvInput(), returnType).name(explainSource())
}
/** Returns the schema of the produced table. */
override def getTableSchema = new TableSchema(fieldNames, fieldTypes)
/** Returns a copy of [[TableSource]] with ability to project fields */
override def projectFields(fields: Array[Int]): CsvTableSource = {
val selectedFields = if (fields.isEmpty) Array(0) else fields
new CsvTableSource(
path,
fieldNames,
fieldTypes,
selectedFields,
fieldDelim,
rowDelim,
quoteCharacter,
ignoreFirstLine,
ignoreComments,
lenient)
}
private def createCsvInput(): RowCsvInputFormat = {
val inputFormat = new RowCsvInputFormat(
new Path(path),
selectedFieldTypes,
rowDelim,
fieldDelim,
selectedFields)
inputFormat.setSkipFirstLineAsHeader(ignoreFirstLine)
inputFormat.setLenient(www.dasheng178.com lenient)
if (quoteCharacter != null) {
inputFormat.enableQuotedStringParsing(quoteCharacter)
}
if (ignoreComments != null) {
inputFormat.setCommentPrefix(ignoreComments)
}
inputFormat
}
override def equals(other: Any): Boolean = other match {
case that: CsvTableSource => returnType == that.returnType &&
path == that.path &&
fieldDelim == that.fieldDelim &&
rowDelim == that.rowDelim &&
quoteCharacter == that.quoteCharacter &&
ignoreFirstLine == that.ignoreFirstLine &&
ignoreComments == that.ignoreComments &&
lenient == that.lenient
case _ => false
}
override def hashCode(www.hengda157.com): Int = {
returnType.hashCode()
}
override def explainSource(): String = {
s"CsvTableSource(" +
s"read fields: ${getReturnType.getFieldNames.mkString(", ")})"
}
}
CsvTableSource同时实现了BatchTableSource及StreamTableSource接口;getDataSet方法使用ExecutionEnvironment.createInput创建DataSet;getDataStream方法使用StreamExecutionEnvironment.createInput创建DataStream
ExecutionEnvironment.createInput及StreamExecutionEnvironment.createInput接收的InputFormat为RowCsvInputFormat,通过createCsvInput创建而来
getTableSchema方法返回的TableSchema通过fieldNames及fieldTypes创建;getReturnType方法返回的RowTypeInfo通过selectedFieldTypes及selectedFieldNames创建;explainSource方法这里返回的是CsvTableSource开头的字符串
小结
TableSource定义了三个方法,分别是getReturnType、getTableSchema、explainSource;BatchTableSource继承了TableSource,它定义了getDataSet方法;StreamTableSource继承了TableSource,它定义了getDataStream方法
CsvTableSource同时实现了BatchTableSource及StreamTableSource接口;getDataSet方法使用ExecutionEnvironment.createInput创建DataSet;getDataStream方法使用StreamExecutionEnvironment.createInput创建DataStream
ExecutionEnvironment.createInput及StreamExecutionEnvironment.createInput接收的InputFormat为RowCsvInputFormat,通过createCsvInput创建而来;getTableSchema方法返回的TableSchema通过fieldNames及fieldTypes创建;getReturnType方法返回的RowTypeInfo通过selectedFieldTypes及selectedFieldNames创建;explainSource方法这里返回的是CsvTableSource开头的字符串
聊聊flink的CsvTableSource的更多相关文章
- 聊聊flink的NetworkEnvironmentConfiguration
本文主要研究一下flink的NetworkEnvironmentConfiguration NetworkEnvironmentConfiguration flink-1.7.2/flink-runt ...
- 聊聊flink Table的groupBy操作
本文主要研究一下flink Table的groupBy操作 Table.groupBy flink-table_2.11-1.7.0-sources.jar!/org/apache/flink/tab ...
- 聊聊flink的AsyncWaitOperator
序本文主要研究一下flink的AsyncWaitOperator AsyncWaitOperatorflink-streaming-java_2.11-1.7.0-sources.jar!/org/a ...
- 聊聊flink的Async I/O
// This example implements the asynchronous request and callback with Futures that have the // inter ...
- 聊聊flink的log.file配置
本文主要研究一下flink的log.file配置 log4j.properties flink-release-1.6.2/flink-dist/src/main/flink-bin/conf/log ...
- [case49]聊聊flink的checkpoint配置
序 本文主要研究下flink的checkpoint配置 实例 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecut ...
- 聊聊flink的BlobStoreService
序 本文主要研究一下flink的BlobStoreService BlobView flink-release-1.7.2/flink-runtime/src/main/java/org/apache ...
- [源码分析] 从源码入手看 Flink Watermark 之传播过程
[源码分析] 从源码入手看 Flink Watermark 之传播过程 0x00 摘要 本文将通过源码分析,带领大家熟悉Flink Watermark 之传播过程,顺便也可以对Flink整体逻辑有一个 ...
- Flink与Spark Streaming在与kafka结合的区别!
本文主要是想聊聊flink与kafka结合.当然,单纯的介绍flink与kafka的结合呢,比较单调,也没有可对比性,所以的准备顺便帮大家简单回顾一下Spark Streaming与kafka的结合. ...
随机推荐
- Mysql:存储过程游标不进循环的原因详解
------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 本篇博客给刚接触存储过程的朋友做个引导作用,目的是解决游标不走循环 很多人发现他的游标,无论是嵌套循环还是单层 ...
- unity游戏在ios11上不显示泰语解决办法
最近在开发中遇到unity游戏在ios11上不显示泰语的问题,全部显示为方框内一个问号. 通过搜索发现这是Unity的一个bug,在2017.3中修复了 但升级unity风险很大,所以我采用了该文中提 ...
- 逆向某停车app(原创)
最近一直在做python开发的事情,信息安全方面做得很少,也是"蛋蛋"的忧伤呀.今天有朋友请我帮忙,将一个app里的文字和图标替换一下,花了一下午和一晚上的时间搞了一下,主要是图标 ...
- i3wm随笔 1
快捷键 mod+0 退出 mod+v 垂直分割 mod+h 水平风格
- 基于Mininet测量路径的损耗率
基于Mininet测量路径的损耗率 控制器采用POX,基于OVS仿真 Mininet脚本 创建Node mininet.node Node 创建链路连接 mininet.link TCLink 设置i ...
- 【snmp】Linux开启snmp及查询
1.Linux snmp 1.安装snmp yum install -y net-snmp* 2.备份snmp配置 cp /etc/snmp/snmpd.conf /etc/snmp/snmpd.co ...
- Liunx expect 基础
a script for study except #!/usr/bin/expect 声明文件内的语法使用 expect 的语法来执行. send send: 向进程发送字符串,用于模拟用户的输入. ...
- Scrum立会报告+燃尽图(十月十九日总第十次):
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2246 项目地址:https://git.coding.net/zhang ...
- 欢迎来怼—第三次Scrum会议
一.会议成员 队名:欢迎来怼队长:田继平队员:李圆圆,葛美义,王伟东,姜珊,邵朔,冉华小组照片: 二.会议时间 2017年10月15日 17:15-17:41 总用时26min 三.会议地点 ...
- springmvc 路由
工作中MVC是较常使用的web框架,作为研发人员,也习惯了以编写Controller作为项目开始,写好了Controller和对应的方法,加上@RequestMapping注解,我们也就认为一切已经准 ...