[codeforces464D]World of Darkraft - 2 概率期望
D. World of Darkraft - 2
time limit per test 2 seconds
memory limit per test 256 megabytes
input standard input
output standard output
Roma found a new character in the game "World of Darkraft - 2". In this game the character fights monsters, finds the more and more advanced stuff that lets him fight stronger monsters.
The character can equip himself with k distinct types of items. Power of each item depends on its level (positive integer number). Initially the character has one 1-level item of each of the k types.
After the victory over the monster the character finds exactly one new randomly generated item. The generation process looks as follows. Firstly the type of the item is defined; each of the k types has the same probability. Then the level of the new item is defined. Let's assume that the level of player's item of the chosen type is equal to t at the moment. Level of the new item will be chosen uniformly among integers from segment [1; t + 1].
From the new item and the current player's item of the same type Roma chooses the best one (i.e. the one with greater level) and equips it (if both of them has the same level Roma choses any). The remaining item is sold for coins. Roma sells an item of level x of any type forx coins.
Help Roma determine the expected number of earned coins after the victory over n monsters.
Input
The first line contains two integers, n and k (1 ≤ n ≤ 105; 1 ≤ k ≤ 100).
Output
Print a real number — expected number of earned coins after victory over n monsters. The answer is considered correct if its relative or absolute error doesn't exceed 10 - 9.
Examples
input
1 3
output
1.0000000000
input
2 1
output
2.3333333333
input
10 2
output
15.9380768924
题解:
这道题真的是好题啊……
我们不难发现,每一种武器的金币贡献都是相互独立的,因此我们只需要处理一种武器的情况,最后*k即可
那么我们考虑转移,设dp数组为f[i][j],表示带着等级为j的武器打i只怪,能得到的期望收益,
那么显然f[0][j]均为0,我们最终的目标就是求f[n][1]
接下来考虑转移,每一次打怪有1/k的概率掉落这种装备,有(k-1)/k概率不掉落,就无法从这种装备上得到收益
因此f[i][j]=(期望金币收益)/k+(k-1)*f[i-1][j]/k
而期望金币收益中,有1/(j+1)概率掉落高级装备,j/(j+1)概率掉落低级装备
因此 期望金币收益=(f[i-1][j+1]+j)/(j+1)+(f[i-1][j]+(j+1)/2)*j/(j+1)
其中(j+1)/2为低级装备的期望收益(平均数)
因此综上,f[i][j]=((f[i-1][j+1]+j)/(j+1.0)+j*(f[i-1][j]+(j+1.0)/2.0 )/(j+1.0))/(k*1.0)+(k-1)*f[i-1][j]/(k*1.0);
但是,这样是一个O(n2)的算法,时间超限,空间也可能超限,因此我们考虑优化
首先显然,f数组可以滚动,解决了空间问题
接着,我们发现1s内108=105*1000,因此我们第二次循环变成1000次以内就好了
那么,我们可不可以在n太大时把第二层n变成一个小数吗?这是正确的吗?
我们可以发现,如果j很大的话,装备升级的可能就很小
如果是f[i][i+1],总的概率是(1/k)i*1/(n+1)!,而题目中说“The answer is considered correct if its relative or absolute error doesn't exceed 10 - 9.”
因此这样小的数据我们完全可以扔掉不要
事实上,我们只要枚举j从1到1000左右即可,这样复杂度就被降到了1s以内,这样我们就解决了本题
代码见下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int n,k;
double f[][];
int main()
{
scanf("%d%d",&n,&k);
int t=min(n,);
int now=;
for(int i=;i<=n;i++,now^=)
for(int j=t;j;j--)
f[now][j]=((f[now^][j+]+j)/(j+1.0)+j*(f[now^][j]+(j+1.0)/2.0 )/(j+1.0))/(k*1.0)+(k-)*f[now^][j]/(k*1.0);
printf("%.10lf",k*f[now^][]);
}
[codeforces464D]World of Darkraft - 2 概率期望的更多相关文章
- 【BZOJ-1419】Red is good 概率期望DP
1419: Red is good Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 660 Solved: 257[Submit][Status][Di ...
- uvalive 7331 Hovering Hornet 半平面交+概率期望
题意:一个骰子在一个人正方形内,蜜蜂在任意一个位置可以出现,问看到点数的期望. 思路:半平面交+概率期望 #include<cstdio> #include<cstring> ...
- OI队内测试一【数论概率期望】
版权声明:未经本人允许,擅自转载,一旦发现将严肃处理,情节严重者,将追究法律责任! 序:代码部分待更[因为在家写博客,代码保存在机房] 测试分数:110 本应分数:160 改完分数:200 T1: 题 ...
- 2016 多校联赛7 Balls and Boxes(概率期望)
Mr. Chopsticks is interested in random phenomena, and he conducts an experiment to study randomness. ...
- 牛客网多校赛第9场 E-Music Game【概率期望】【逆元】
链接:https://www.nowcoder.com/acm/contest/147/E 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524 ...
- 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp
题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...
- [LnOI2019]加特林轮盘赌(DP,概率期望)
[LnOI2019]加特林轮盘赌(DP,概率期望) 题目链接 题解: 首先特判掉\(p=0/1\)的情况... 先考虑如果\(k=1\)怎么做到\(n^2\)的时间复杂度 设\(f[i]\)表示有\( ...
- 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp
题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...
- bzoj 2969: 矩形粉刷 概率期望
题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...
随机推荐
- 建表/修改表名/增加删除字段(MySql)
修改表名:alter table 旧表名 rename 新表名; 删除字段:alter table 表名 drop 字段名; 增加字段:alter table 表名 add 字段名 字段类型 [def ...
- JUC——JUC开发简介(一)
前言 JUC是Java5.0开始提供的一组专门实现多线程并发处理的开发框架,利用JUC开发架构可以有效的解决实际线程项目开发之中出现的死锁.阻塞.资源访问与公平机制. 此笔记主要记录java.util ...
- 数据库sql优化总结之2-百万级数据库优化方案+案例分析
项目背景 有三张百万级数据表 知识点表(ex_subject_point)9,316条数据 试题表(ex_question_junior)2,159,519条数据 有45个字段 知识点试题关系表(ex ...
- 选题博客:北航iCourse课程信息平台
1. 用户调查 在选题的时候,我们面向北航所有本科在读本科生,发布了<北航信息平台用户调查>.此次问卷调查共回收有效问卷95份. 1.1 功能需求调查 调查其中一项是让同学们对平台功能进行 ...
- python循环结构
while循环 while 条件表达式: 语句块 while语句的条件表达式是循环条件,常用的是关系表达式或者逻辑表达式,语句块是循环执行的语句. n=1 p=1 num=int(input(&quo ...
- Alpha发布——视频博客
1.视频链接 视频上传至优酷自频道,地址链接:https://v.youku.com/v_show/id_XMzg5MzQ4MzM2MA==.html?spm=a2h0k.11417342.sores ...
- Android开发第二阶段(4)
今天:对按扭位置重新调整了一下布局了一下,改变了layout中见面的字体格式等等是其更美观. 明天:对图片的修改和替换.
- RAR和ZIP:压缩大战真相 (挺赞值得了解)
前言--王者归来? 等待足足两年之久,压缩霸主WinZip终于在万众期待下发布了9.0正式版.全世界自然一片沸腾,在世界各大知名下载网站中,WinZip9.0再次带起下载狂潮.然而此时国内并没有王者回 ...
- whu Problem 1537 - A - Stones I 贪心
题目链接: http://acm.whu.edu.cn/land/problem/detail?problem_id=1537 Stones I Time Limit: 1000MSMemory Li ...
- RovingUI组件库-包含堆栈式通知提醒框(Toast)的小程序组件库
RovingUI是个人在开发小程序过程中将用到的组件集合而成的一个UI库,包含一些基本通用组件(按钮.栅格.通用样式.徽标.通知和面包屑). 源起得归于我在开发中没有找到现成的堆栈式提醒框(比如ant ...