【CF528D】Fuzzy Search(FFT)

题面

给定两个只含有\(A,T,G,C\)的\(DNA\)序列

定义一个字符\(c\)可以被匹配为:它对齐的字符,在距离\(K\)以内,存在一个字符\(c\),问给定串\(T\)在\(S\)中出现了几次。

\(|S|,|T|,K<=200000\)

题解

字符集很小,可以分开进行\(FFT\)。

现在的匹配的定义为距离当前位置\(K\)以内的所有字符中是否含有这个字符,如果有设置为\(1\),没有就是\(0\),把字符分开做\(FFT\)然后相加,检查是否等于\(|T|\)即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 888888
const double Pi=acos(-1);
struct Complex{double a,b;}A[MAX],B[MAX],W[MAX];
Complex operator+(Complex a,Complex b){return (Complex){a.a+b.a,a.b+b.b};}
Complex operator-(Complex a,Complex b){return (Complex){a.a-b.a,a.b-b.b};}
Complex operator*(Complex a,Complex b){return (Complex){a.a*b.a-a.b*b.b,a.b*b.a+a.a*b.b};}
int r[MAX],N,n,m,l,K;
int ss[4][MAX],Ans[MAX];
char S[MAX],T[MAX],Box[4]={'A','T','G','C'};
void FFT(Complex *P,int opt)
{
for(int i=1;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
for(int p=i<<1,j=0;j<N;j+=p)
for(int k=0;k<i;++k)
{
Complex w=(Complex){W[N/i*k].a,W[N/i*k].b*opt};
Complex X=P[j+k],Y=w*P[i+j+k];
P[j+k]=X+Y;P[i+j+k]=X-Y;
}
if(opt==-1)for(int i=0;i<N;++i)P[i].a/=N;
}
void Clear(){for(int i=0;i<N;++i)A[i].a=B[i].a=A[i].b=B[i].b=0;}
int main()
{
scanf("%d%d%d",&n,&m,&K);
for(N=1;N<=(n+m-2);N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=1;i<N;i<<=1)
for(int k=0;k<i;++k)W[N/i*k]=(Complex){cos(k*Pi/i),sin(k*Pi/i)};
scanf("%s",S);scanf("%s",T);
for(int i=1;i<=n;++i)
for(int k=0;k<4;++k)
if(S[i-1]==Box[k])ss[k][i]++;
for(int i=1;i<=n;++i)
for(int k=0;k<4;++k)ss[k][i]+=ss[k][i-1];
for(int k=0;k<4;++k)
{
Clear();
for(int i=0;i<n;++i)
if(ss[k][min(n,i+K+1)]-ss[k][max(0,i-K)])
A[i].a=1;
for(int i=0;i<m;++i)
if(T[m-i-1]==Box[k])B[i].a=1;
FFT(A,1);FFT(B,1);
for(int i=0;i<N;++i)A[i]=A[i]*B[i];
FFT(A,-1);
for(int i=m-1;i<n;++i)Ans[i-m+1]+=(int)(A[i].a+0.5);
}
int ans=0;
for(int i=0;i<n;++i)if(Ans[i]==m)++ans;
printf("%d\n",ans);
return 0;
}

【CF528D】Fuzzy Search(FFT)的更多相关文章

  1. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  2. 洛谷P3803 【模板】多项式乘法(FFT)

    P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...

  3. 洛谷 P3803 【模板】多项式乘法(FFT)

    题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...

  4. 【luogu P3803】【模板】多项式乘法(FFT)

    [模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...

  5. 【BZOJ3527】[ZJOI2014] 力(FFT)

    题目: BZOJ3527 分析: FFT应用第一题-- 首先很明显能把\(F_j\)约掉,变成: \[E_j=\sum _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...

  6. 【数学】快速傅里叶变换(FFT)

    快速傅里叶变换(FFT) FFT 是之前学的,现在过了比较久的时间,终于打算在回顾的时候系统地整理一篇笔记,有写错的部分请指出来啊 qwq. 卷积 卷积.旋积或褶积(英语:Convolution)是通 ...

  7. B - Fuzzy Search (FFT)

    题目链接:https://cn.vjudge.net/contest/281959#problem/B 题目大意:给你n,m,k.然后输入两个字符串,n代表第一个字符串s1,m代表第二个字符串s2,然 ...

  8. 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)

    题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...

  9. Codeforces 528D Fuzzy Search(FFT)

    题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...

随机推荐

  1. Linux 内核3.10.5 专场

    今天本人十分靠谱地下载了linux 内核的3.10.5版本,这个版本是最新的稳定版. 听路飞大虾(哪个路飞?就是那个戴草帽的橡胶小伙,航海很多时候都很空闲的,于是最近他也开始研读linux 内核了.) ...

  2. 用Python深入理解跳跃表原理及实现

    最近看 Redis 的实现原理,其中讲到 Redis 中的有序数据结构是通过跳跃表来进行实现的.第一次听说跳跃表的概念,感到比较新奇,所以查了不少资料.其中,网上有部分文章是按照如下方式描述跳跃表的: ...

  3. docker部署war包到阿里云

    最近买了个阿里云服务器,配置1核2g内存,学习够了.记录下过程. 1,服务器相关,请看下图,云服务器主要配置是安全组和密钥,前者是开放端口,后者可以用于远程连接(比如我windows系统通过putty ...

  4. div不设置高度背景颜色或外边框不能显示的解决方法

    在使用div+css进行网页布局时,如果外部div有背景颜色或者边框,而不设置其高度,在浏览时出现最外层Div的背景颜色和边框不起作用的问题. 大体结构<div class="oute ...

  5. HTML/CSS的基本使用

    本篇博客主要介绍一下HTML/CSS的基本使用,关于它们的介绍便不在赘述,读者可自行google或百度. 一.HTML 先来简单介绍一下HTML标签: HTML 标签是由尖括号包围的关键词,比如 &l ...

  6. [朴孝敏][Gold]

    歌词来源:http://music.163.com/#/song?id=406924220 作曲 : Ryan S. Jhun/David Quinones/Edwin Menjivar/Mateo ...

  7. ViewPort <meta>标记

    ViewPort <meta>标记用于指定用户是否可以缩放Web页面,如果可以,那么缩放到的最大和最小缩放比例是什么.使用ViewPort <meta>标记还表示文档针对移动设 ...

  8. 工作在Amazon:为何晋升如此难?

    英文原文:Why It's So Difficult to Climb Amazon's Corporate Ladder 本文作者 Brad Stone 的新书 The Everything Sto ...

  9. rhel6 mysql skip-grant-tables 添加用户报错 ERROR 1290

    不小心把数据库密码忘掉了, 这个时候我们只需要在数据库的配置文件里面添加 skip-grant-tables 然后重新启动服务,再登录数据库就不要我们输入密码了 这个时候我成功登录数据,可是不小心又把 ...

  10. Python学习小目录汇总

    python其他知识目录 python基础知识-1 1.typora软件使用 2.python解释器安装 3.Python解释器环境变量添加 4.计算机编码知识: 5.输出print(): 6.变量 ...