2186: [Sdoi2008]沙拉公主的困惑

Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 6103  Solved: 2060
[Submit][Status][Discuss]

Description

  大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。

Input

第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n

Output

共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值

Sample Input

1 11
4 2

Sample Output

1

数据范围:
对于100%的数据,1 < = N , M < = 10000000

HINT

Source

思路:开始以为是容斥,还乱做了几发。

这个题首先要做知道ans=N!*phi(M!)/M!;因为:如果x与y互质,那么x+y与y互质。 此题如果x与M!互质,那么x+M!与M!互质。所以我们得到[1,M!]与M!互质的个数=phi(M!);那么在[1,N!]与M!互质的个数出来了,因为M!|N!,所以ans=N!/M!*phi(M!)。

然后就是预处理,我们的ans=N!*Π(P-1)/P。我们可以预处理出逆元,以及阶乘的前缀(P-1)/P之积。

#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int p[maxn],sum[maxn],cnt,rev[maxn],P,fac[maxn]; bool vis[maxn];
inline void read(int &x){
x=; char c=getchar();
while(c>''||c<'') c=getchar();
while(c>=''&&c<='') x=x*+c-'',c=getchar();
}
void prime()
{
for(int i=;i<maxn;i++){
if(!vis[i]) p[++cnt]=i;
for(int j=;j<=cnt&&i*p[j]<maxn;j++){
vis[i*p[j]]=;
if(!(i%p[j])) break;
}
}
rev[]=; rev[]=; fac[]=;
for(int i=;i<maxn;i++) fac[i]=1LL*fac[i-]*i%P;
for(int i=;i<maxn;i++) rev[i]=1LL*(P-P/i)*rev[P%i]%P;
sum[]=sum[]=;
for(int i=;i<maxn;i++){
if(!vis[i]) sum[i]=1LL*sum[i-]*(i-)%P*rev[i]%P;
else sum[i]=sum[i-];
}
}
int main()
{
int T,N,M,ans;
read(T); read(P);
prime();
while(T--){
read(N); read(M);
ans=1LL*fac[N]*sum[M]%P;
printf("%d\n",ans);
}
return ;
}

BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)的更多相关文章

  1. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  2. [bzoj2186][Sdoi2008]沙拉公主的困惑_数论

    沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...

  3. 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑

    http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...

  4. BZOJ2186: [Sdoi2008]沙拉公主的困惑

    传送门 常规数论题,利用欧拉函数的相关性质. 题求$[1,N!]$中与$M!$互质的数的个数,且$M \leq N$.然后根据欧拉函数的相关性质很容易得出这道题的答案为$\frac{\phi (M!) ...

  5. BZOJ2186 SDOI2008沙拉公主的困惑(数论)

    由于n!是m!的倍数,而对于每个与m!互质且小于m!的数x,x+m!.x+2*m!……也与其互质,所以答案即为(n!/m!)*φ(m!). φ(m!)=m!*∏(1-1/pi).其中的pi即为1~m中 ...

  6. [bzoj2186][Sdoi2008]沙拉公主的困惑——数论

    题目大意 求 \[\sum_{i = 1}^{N!} [gcd(i, M!) = 1]\] 题解 显然,题目就是求 \[N!(1-\frac{1}{p_1})(1-\frac{1}{p_2})...\ ...

  7. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  8. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

  9. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

随机推荐

  1. java 反射 (一)

    原文地址https://www.zhihu.com/question/24304289   首先我们了解一下JVM,什么是JVM,Java的虚拟机,java之所以能跨平台就是因为这个东西,你可以理解成 ...

  2. cocos代码研究(11)ActionManager类学习笔记

    理论部分 ActionManager是一个单例类,管理所有动作. 通常你不需要直接使用这个类.大多情况下,你将使用Node的接口,它提供了更友好的封装 但也有一些情况下,你可能需要使用这个单例. 示例 ...

  3. SQLServer中char、varchar、nchar、nvarchar比较

    转自:http://www.cnblogs.com/bluesky_blog/archive/2009/07/31/1535722.html 对于程序中的string型字段,SQLServer中有ch ...

  4. netty4.1.6源码2-------创建服务端的channel

    1. netty在哪里调用jdk底层的socket去创建netty服务端的socket. 2. 在哪里accept连接. 服务端的启动: 1. 调用jdk底层的api去创建jdk的服务端的channe ...

  5. 20145122 《Java程序设计》第4周学习总结

    教材学习内容总结 第六章 1.在java中,子类只能继承一个父类. 2.在java中,继承时使用extends关键字,private成员也会被继承. 3.检查多态语法逻辑是否正确,方式是从=号右边往左 ...

  6. ZOJ 2587 Unique Attack(最小割唯一性判断)

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2587 题意:判断最小割是否唯一. 思路: 最小割唯一性的判断是先跑一遍最大 ...

  7. UVa 1637 纸牌游戏(全概率公式)

    https://vjudge.net/problem/UVA-1637 题意: 36张牌分成9堆,每堆4张牌.每次可以拿走某两堆顶部的牌,但需要点数相同.每种拿法的概率均为1/5.求成功概率. 思路: ...

  8. 100W数据,测试索引

    两张表,结构相同,数据内容相同.唯一不同的就是是否包含索引.tf_user_index表中包含索引. 这100w数据,我造了近一天时间. mysql> select count(*) from ...

  9. [QT]QApplication和QCoreApplication的用法

    转自:http://www.tuicool.com/articles/qmI7Bf 故事的背景是这样的,我们在写QT程序的时候或者在开始写QT程序之前总会看到这样的语句 QApplication ap ...

  10. 插件uaredirect.js实现电脑版跳转到手机版网站

    一.介绍 这段时间,有好多朋友问我,跳转到手机版的那个JS是怎么写的.其实这个JS也不是我写的,是百度siteapp下的一款跳转的产品,使用起来很方便.你可以用这款JS跳转到手机版,也可以跳转到任何你 ...