传送门

首先这个题目显然就是先求出所有的 \(border\),问题转化成一个可行性背包的问题

一个方法就是同余类最短路,裸跑 \(30\) 分,加优化 \(50\) 分

首先有个性质

\(border\) 分成的等差数列的个数不超过 \(log\)

和回文树的性质的证明类似瞎画图一下就行了

我们注意到可以一个一个等差数列的更新最短路

要做到这个,必须能从之前的等差数列的模数 \(n\) 转移到当前等差数列的 \(x\)

假设模 \(n\) 的最短路为 \(f\),模 \(x\) 的为 \(g\)

只需要 \(f_i\) 更新 \(g_{f_i~mod~x}\) 之后 \(g\) 自己通过添加 \(n\) 更新即可

现在考虑 \(g\) 每次 \(+n\) 更新

注意到把每次 \(+n\) 的下标弄出来,一定是若干个环,环之间独立

显然每个的最小值不会再次更新,那么找到这个点就变成了链,然后一个个向后 \(+n\) 更新即可

再考虑每个等差数列的内部更新,模数我们选择首项 \(x\),这样才比较可做

设公差为 \(d\),长度为 \(len\)

同样的,把每次 \(+d\) 的下标弄出来,还是若干个独立的环

找到最小值的位置编号 \(0\) 对变成的链向后一一编号

那么对于第 \(i\) 个点,可以从 \(j\) 加上 \(x+d\times(i-j)\) 转移,这样的 \(j\) 必须满足 \(i-j<len\)

这个东西显然可以单调队列优化一波

然后就可能可以通过这一题了

关于被hack这件事情,卡卡常就好了

# include <bits/stdc++.h>
using namespace std;
typedef long long ll; const int maxn(5e5 + 5); int test, n, nxt[maxn], len[maxn], cnt, vis[maxn], idx, id[maxn];
ll w, ans, f[maxn], g[maxn], inf, que[maxn];
char s[maxn];
queue <int> q; inline void Calc(int lst, int u, int d, int num) {
int i, j, k, mnp, hd, tl;
for (i = 0; i < lst; ++i) g[i] = f[i];
for (i = 0; i < u; ++i) f[i] = inf;
for (i = 0; i < lst; ++i) if (g[i] != inf) f[g[i] % u] = min(f[g[i] % u], g[i]);
++idx;
for (i = 0; i < u; ++i)
if (vis[i] != idx) {
mnp = i, vis[i] = idx;
for (j = (i + lst) % u; j ^ i; j = (j + lst) % u) {
if (f[j] < f[mnp]) mnp = j;
vis[j] = idx;
}
for (k = mnp, j = (mnp + lst) % u; j ^ mnp; k = j, j = (j + lst) % u)
f[j] = min(f[j], f[k] + lst);
}
++idx;
for (i = 0; i < u; ++i)
if (vis[i] != idx) {
mnp = i, vis[i] = idx, hd = 0, tl = -1;
for (j = (i + d) % u; j ^ i; j = (j + d) % u) {
if (f[j] < f[mnp]) mnp = j;
vis[j] = idx;
}
que[0] = f[mnp], id[++tl] = 0;
for (k = 1, j = (mnp + d) % u; j ^ mnp; j = (j + d) % u, ++k) {
while (hd <= tl && k - id[hd] >= num) ++hd;
if (hd <= tl) f[j] = min(f[j], que[hd] + u + (ll)(k - id[hd]) * d);
while (hd <= tl && que[tl] - (ll)id[tl] * d > f[j] - (ll)k * d) --tl;
que[++tl] = f[j], id[tl] = k;
}
}
} inline void Solve() {
int i, j, u, d, lst;
scanf("%d%lld", &n, &w), ans = 0;
scanf(" %s", s + 1);
for (i = 2, j = 0; i <= n; ++i) {
while (j && s[i] != s[j + 1]) j = nxt[j];
j += s[i] == s[j + 1], nxt[i] = j;
}
cnt = 0, j = n;
while (j) len[++cnt] = n - nxt[j], j = nxt[j];
sort(len + 1, len + cnt + 1), --cnt;
memset(f, 63, sizeof(f)), inf = f[0];
f[n % len[1]] = n, u = lst = n;
reverse(len + 1, len + cnt + 1);
for (i = 1; i < cnt; i = j) {
d = len[i] - len[i + 1], j = i + 1;
while (j <= cnt && len[j - 1] - len[j] == d) ++j;
u = len[j - 1], Calc(lst, u, d, j - i), lst = u;
}
if (cnt) u = len[cnt], Calc(lst, u, 0, 1);
for (i = 0; i < u; ++i) if (f[i] <= w) ans += (w - f[i]) / u + 1;
printf("%lld\n", ans);
} int main() {
scanf("%d", &test);
while (test) --test, Solve();
return 0;
}

UOJ#172. 【WC2016】论战捆竹竿的更多相关文章

  1. bzoj4406: [Wc2016]论战捆竹竿&&uoj#172. 【WC2016】论战捆竹竿

    第二次在bzoj跑进前十竟然是因为在UOJ卡常致死 首先这个题其实就是一个无限背包 一般做法是同余最短路,就是bzoj2118: 墨墨的等式可以拿到30分的好成绩 背包是个卷积就分治FFT优化那么下面 ...

  2. luogu P4156 [WC2016]论战捆竹竿

    传送门 官方题解(证明都在这) 神仙题鸭qwq 转化模型,发现这题本质就是一个集合,每次可以加上集合里的数,问可以拼出多少不同的数 首先暴力需要膜意义下的最短路,例题戳这 然后这个暴力可以优化成N^2 ...

  3. Luogu4156 WC2016 论战捆竹竿 KMP、同余类最短路、背包、单调队列

    传送门 豪华升级版同余类最短路-- 官方题解 主要写几个小trick: \(1.O(nm)\)实现同余类最短路: 设某一条边长度为\(x\),那么我们选择一个点,在同余类上不断跳\(x\),可以形成一 ...

  4. BZOJ4406 WC2016 论战捆竹竿

    Problem BZOJ Solution 显然是一个同余系最短路问题,转移方案就是所有|S|-border的长度,有 \(O(n)\) 种,暴力跑dijkstra的复杂度为 \(O(n^2\log ...

  5. 「WC2016」论战捆竹竿

    「WC2016」论战捆竹竿 前置知识 参考资料:<论战捆竹竿解题报告-王鉴浩>,<字符串算法选讲-金策>. Border&Period 若前缀 \(pre(s,x)​\ ...

  6. UOJ#172. 【WC2016】论战捆竹竿 字符串 KMP 动态规划 单调队列 背包

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ172.html 题解 首先,这个问题显然是个背包问题. 然后,可以证明:一个字符串的 border 长度可 ...

  7. 【WC2016】论战捆竹竿

    已经快三周了啊--终于把挖的坑填了-- 首先显然是把除了自身的所有border拿出来,即做 \(\left\{ n - b_1, n - b_2, \dots, n - b_k, n \right\} ...

  8. 【LuoguP4156】论战捆竹竿

    题目链接 题意简述 你有一个长度为 n 的字符串 , 将它复制任意次 , 复制出的串的前缀可以与之前的串的后缀重叠在一起 , 问最后总共可能的长度数目 , 长度不能超过 \(w\) 多组数据. \(n ...

  9. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

随机推荐

  1. rpm小结

    包括安装.卸载.升级.查询.校验.数据库维护     一. 安装: 常用方法:rpm -ivh 包名 ,其中“i”表示安装, "v"表示显示安装过程,“h"表示以#显示程 ...

  2. 8102 年的现代 Web 开发最佳实践(笑)

    简评:8102 年了,现在 web 开发的最佳实践是什么,让本文来告诉你.原文只提到一部分,可以查看 reddit 上对此文的评论查看补充的最佳实践 https://old.reddit.com/r/ ...

  3. Leetcode 98 验证二叉搜索树 Python实现

    给定一个二叉树,判断其是否是一个有效的二叉搜索树. 假设一个二叉搜索树具有如下特征: 节点的左子树只包含小于当前节点的数. 节点的右子树只包含大于当前节点的数. 所有左子树和右子树自身必须也是二叉搜索 ...

  4. [转载+整理]Nginx Location匹配规则

    目录 规则语法 location 分类 匹配顺序: 扩展 location / {}和 location =/ {}的区别 测试 规则语法 语法 匹配规则 空 普通匹配(遵循最大前缀匹配规则, 优先度 ...

  5. bingoyes' tiny dream

    Gauss Elimination bool Gauss(){ int now=1,nxt; double t; R(i,1,n){ //enumerate the column for(nxt=no ...

  6. stark - 4 ⇲ 视图函数

    ✘  list_view 处理表格(默认是显示表结构的所有字段) 1 list_display = self.get_list_display() # 4.1处理表头 header_list = [] ...

  7. (转)WordPress常用模板函数 修改或自制WordPress主题必备

    对于很多WordPress新手来说,不懂任何代码的情况下去瞎改WordPress主题,得出的效果往往会出现语法错误之类的东西或效果不尽人意.想要修改 WordPress主题模板文件最基本的当然要懂得H ...

  8. Java二进制兼容性原理

    一.概述 现在的软件越来越依赖于不同厂商.作者开发的共享组件,组件管理也变得越来越重要.在这方面,一个极其重要的问题是类的不同版本的二进制兼容性,即一个类改变时,新版的类是否可以直接替换原来的类,却不 ...

  9. python-哈夫曼树

    #!/usr/bin/python #coding=utf-8 #哈夫曼树创建 class Node(): def __init__(self,value,left=None,right=None): ...

  10. python实例:在列表,字典,集合中,根据条件筛选数据

    1. 从列表中过滤掉 负数 from random import randint # 随机生成列表 data = [randint(-10, 10) for _ in range(10)] print ...