Tensorflow - Implement for a Convolutional Neural Network on MNIST.
Coding according to TensorFlow 官方文档中文版
中文注释源于:tf.truncated_normal与tf.random_normal
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) ''' Intro. for this python file.
Objective:
Implement for a Convolutional Neural Network on MNIST.
Operating Environment:
python = 3.6.4
tensorflow = 1.5.0
''' # To avoid initializing weight/bias variables repeatedly, we define two functions for initialization.
''' tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)
Explanation:
Outputs random values from a truncated normal distribution. The generated values follow a normal distribution with
specified mean and standard deviation, except that values whose magnitude is more than 2 standard deviations from
the mean are dropped and re-picked.
从截断的正态分布输出随机值。
Args:
shape: A 1-D integer Tensor or Python array. The shape of the output tensor.
mean: A 0-D Tensor or Python value of type dtype. The mean of the truncated normal distribution.
stddev: A 0-D Tensor or Python value of type dtype. The standard deviation of the normal distribution, before truncation.
dtype: The type of the output.
seed: A Python integer. Used to create a random seed for the distribution. See tf.set_random_seed for behavior.
name: A name for the operation (optional).
Returns:
A tensor of the specified shape filled with random truncated normal values.
''' def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(value=0.1, shape=shape)
return tf.Variable(initial) # Convolution
''' tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_format="NHWC", dilations=[1, 1, 1, 1], name=None)
Explanation:
Computes a 2-D convolution given 4-D input and filter tensors. Given an input tensor of shape [batch, in_height,
in_width, in_channels] and a filter / kernel tensor of shape [filter_height, filter_width, in_channels, out_channels],
this op performs the following:
1. Flattens the filter to a 2-D matrix with shape [filter_height * filter_width * in_channels, output_channels].
2. Extracts image patches from the input tensor to form a virtual tensor of shape [batch, out_height, out_width,
filter_height * filter_width * in_channels].
3. For each patch, right-multiplies the filter matrix and the image patch vector.
In detail, with the default NHWC format,
output[b, i, j, k] = sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q] * filter[di, dj, q, k]
Must have strides[0] = strides[3] = 1. For the most common case of the same horizontal and vertices strides,
strides = [1, stride, stride, 1].
Args:
input: A Tensor. Must be one of the following types: half, bfloat16, float32, float64. A 4-D tensor. The dimension
order is interpreted according to the value of data_format, see below for details.
filter: A Tensor. Must have the same type as input. A 4-D tensor of shape [filter_height, filter_width, in_channels,
out_channels]
strides: A list of ints. 1-D tensor of length 4. The stride of the sliding window for each dimension of input. The
dimension order is determined by the value of data_format, see below for details.
padding: A string from: "SAME", "VALID". The type of padding algorithm to use.
use_cudnn_on_gpu: An optional bool. Defaults to True.
data_format: An optional string from: "NHWC", "NCHW". Defaults to "NHWC". Specify the data format of the input and
output data. With the default format "NHWC", the data is stored in the order of: [batch, height, width,
channels]. Alternatively, the format could be "NCHW", the data storage order of: [batch, channels,
height, width].
dilations: An optional list of ints. Defaults to [1, 1, 1, 1]. 1-D tensor of length 4. The dilation factor for each
dimension of input. If set to k > 1, there will be k-1 skipped cells between each filter element on that
dimension. The dimension order is determined by the value of data_format, see above for details. Dilations
in the batch and depth dimensions must be 1.
name: A name for the operation (optional).
第一个参数input:指需要做卷积的输入图像,要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,
具体含义是[训练时一个batch的图片数量,图片高度,图片宽度,图片通道数],注意这是一个4维的Tensor,要
求类型为float32和float64其中之一。
第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]
这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相
同,此处,第三维in_channels,就是参数input的第四维。
第三个参数strides:卷积操作在图像每一维上的步长(strides[0]控制batch,strides[1]控制height,strides[2]控制width,
strides[3]控制channels,第一个和最后一个跨度参数通常很少修改,因为它们会在该运算中跳过一些数据,
从而不将这部分数据考虑在内,如果希望降低输入的维数,可修改height和width参数),这是一个一维向量,
长度为4。
第四个参数padding:string类型的参数,只能是“SAME”和“VALID”中的一个,这个值决定了不同的卷积方式。
第五个参数use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true。
Returns:
A Tensor. Has the same type as input.
返回一个Tensor,这个输出就是我们常说的feature map,shape依然是[batch, height, width, channels]这种形式。
''' def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding="SAME") ''' tf.nn.max_pool(value, ksize, strides, padding, data_format="NHWC", name=None)
Explanation:
Performs the max pooling on the input.
Args:
value: A 4-D Tensor of the format specified by data_format.
ksize: A list or tuple of 4 ints. The size of the window for each dimension of the input tensor.
strides: A list or tuple of 4 ints. The stride of the sliding window for each dimension of the input tensor.
padding: A string, either 'VALID' or 'SAME'. The padding algorithm. See the comment here
data_format: A string. 'NHWC', 'NCHW' and 'NCHW_VECT_C' are supported.
name: Optional name for the operation.
第一个参数value:池化操作的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]
这样的shape。
第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,
所以将这两个维度设为1。
第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride, stride, 1]。
第四个参数padding:和卷积类似,可以取“VALID”或者“SAME”。
Returns:
A Tensor of format specified by data_format. The max pooled output tensor.
返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式。
''' # Pooling
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") # Set a placeholder. We hope arbitrary number of images could be input to this model.
x = tf.placeholder("float", [None, 784]) # Set a placeholder 'y_' to accept the ground-truth values.
y_ = tf.placeholder("float", [None, 10]) # 1st Convolutional Layer
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32]) # In order to utilize this layer, we convert x to a 4-D vector.
x_image = tf.reshape(x, [-1, 28, 28, 1]) # 1st ReLU & Max-Pooling
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) # 2nd Convolutional Layer
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) # Fully Connected Layer
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) # Dropout Layer
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # Output Layer
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) # Training and Evaluation
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) # Launch the graph in a session.
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
# train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) # ValueError
train_accuracy = accuracy.eval(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g" % (i, train_accuracy))
# train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) # ValueError
# sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) # Correct
train_step.run(session=sess, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print("test accuracy %g" % accuracy.eval(sesson=sess, feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})) # The training accuracy is stable at 1.
Tensorflow - Implement for a Convolutional Neural Network on MNIST.的更多相关文章
- Convolutional Neural Network in TensorFlow
翻译自Build a Convolutional Neural Network using Estimators TensorFlow的layer模块提供了一个轻松构建神经网络的高端API,它提供了创 ...
- tensorflow MNIST Convolutional Neural Network
tensorflow MNIST Convolutional Neural Network MNIST CNN 包含的几个部分: Weight Initialization Convolution a ...
- 卷积神经网络(Convolutional Neural Network,CNN)
全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...
- 【转载】 卷积神经网络(Convolutional Neural Network,CNN)
作者:wuliytTaotao 出处:https://www.cnblogs.com/wuliytTaotao/ 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可,欢迎 ...
- 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...
- 卷积神经网络(Convolutional Neural Network, CNN)简析
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID ...
- HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL DEEP CONVOLUTIONAL NEURAL NETWORK阅读笔记
HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL DEEP CONVOLUTIONAL NEURAL NETWORK 论文地址:https:/ ...
- A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK文章笔记
A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeex ...
- 【论文阅读】ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
ShuffleNet: An Extremely Efficient Convolutional Neural Network for MobileDevices
随机推荐
- linux文件系统写过程简析
linux写入磁盘过程经历VFS -> 页缓存(page cache) -> 具体的文件系统(ext2/3/4.XFS.ReiserFS等) -> Block IO ->设备 ...
- 结构之美——优先队列基本结构(四)——二叉堆、d堆、左式堆、斜堆
实现优先队列结构主要是通过堆完成,主要有:二叉堆.d堆.左式堆.斜堆.二项堆.斐波那契堆.pairing 堆等. 1. 二叉堆 1.1. 定义 完全二叉树,根最小. 存储时使用层序. 1.2. 操作 ...
- 3.Spring Cloud初相识--------Ribbon客户端负载均衡
前言: 在生产环境中,未避免单点故障,每个微服务都会做高可用部署. 通白的说,就是每一个一模一样的服务会根据需求提供多分在多台机器上. 那么在大并发的情况下,如何分配服务可以快速得到响应,就成为了我们 ...
- 解决Vue中"This dependency was not found"的方法
今天在初始化项目中,出现了一个奇怪的情况:明明路径是对的,但是编译的时候,一直报"This dependency was not found"的错. 代码如下: import Vu ...
- VS2015创建WDK的问题
在微软官网找了半天.. 搜索window driver kit,好吧.进入一页英文页面.. https://docs.microsoft.com/en-us/windows-hardware/driv ...
- sqli-labs(less-11-16)
POST登入 首先试试 uname=admin'# & passwd=1 登入成功 如果不知道用户名 ,注释符被过滤,可以从password入手 一般第一个登陆字段(一般是用户名)就用注释,第 ...
- Java HashMap 源代码分析
Java HashMap jdk 1.8 Java8相对于java7来说HashMap变化比较大,在hash冲突严重的时候java7会退化为链表,Java8会退化为TreeMap 我们先来看一下类图: ...
- LIFO栈 ADT接口 数组实现
LIFO 栈结构 typedef int ElemenType; struct seqStack{ ElemeType data[MaxSize]; int top; }; typedef struc ...
- BZOJ 小Z的袜子 2038 国家集训队
过程: 想了很久如何求组合数C(n,m),然而 YL 同学提醒了可以直接除以 2*n*(n - 1 ).改了之后果然对了,以为一定是一次性AC 了,然而 WA 了3次,尴尬 —— 神 TM,ZC 苟看 ...
- Java 访问控制规则简介
1. 概述 老生常谈的内容 巩固一下自己 要摇摇欲坠的基础 内容确实不怎么高级... 2. 常规解释 1. 概述 简单说下什么情况 在单纯考虑 public, protected, 以及 privat ...