题目描述

造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000)。由于对一些任务的起始条件有着严格的限制,所以每个任务的起始时间T1,T2,…,Tn并不是很容易确定的(但这些起始时间都是非负整数,因为它们必须在整个工程开始后启动)。例如:挖掘完成后,紧接着就要打地基;但是混凝土浇筑完成后,却要等待一段时间再去掉模板。

这种要求就可以用M(5≤m≤5000)个不等式表示,不等式形如Ti-Tj≤b代表i和j的起始时间必须满足的条件。每个不等式的右边都是一个常数b,这些常数可能不相同,但是它们都在区间(-100,100)内。

你的任务就是写一个程序,给定像上面那样的不等式,找出一种可能的起始时间序列T1,T2,…,Tn,或者判断问题无解。对于有解的情况,要使最早进行的那个任务和整个工程的起始时间相同,也就是说,T1,T2,…,Tn中至少有一个为0。

输入输出格式

输入格式:

第一行是用空格隔开的两个正整数n和m,下面的m行每行有三个用空格隔开的整数i,j,b对应着不等式Ti-Tj≤b。

输出格式:

如果有可行的方案,那么输出N行,每行都有一个非负整数且至少有一个为0,按顺序表示每个任务的起始时间。如果没有可行的方案,就输出信息“NO SOLUTION”。

输入输出样例

输入样例#1:

5 8
1 2 0
1 5 -1
2 5 1
3 1 5
4 1 4
4 3 -1
5 3 -1
5 4 -3
输出样例#1:

0
2
5
4
1
输入样例#2:

5 5
1 2 -3
1 5 -1
2 5 -1
5 1 -5
4 1 4
输出样例#2:

NO SOLUTION

解:这道题目我们首先需要判负环,如果中间存在负环,那么我们就输出"NO SOLUTION";

  那么接下来我们可以建一个“超级原点”,使它连接所有的点,这样即使原本多个联通块,我们也可以一次搜完所有的联通块了。

  因为题目中要求至少一个0,那么我们只需要对每个点的距离减去最小距离的点的值,就能保证至少有一个0(就是最小距离的点)了。

#include<bits/stdc++.h>
using namespace std;
#define man 5050
template <class T>
inline void read(T &x)
{ x=0;bool f=0;char ch=getchar();
while(!isdigit(ch)){ f=(ch==45);ch=getchar();}
while(isdigit(ch)) { x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
x=f?(~x+1):x;
}
#define ll long long
/*TEST*/
int n,m;
/*EDGE*/
int degree[man],head[man<<2],num=0;
struct edge
{ int from,next,to,dis;}e[man<<2];
inline void add(int from,int to,int dis)
{ e[++num].next=head[from];
e[num].to=to;
e[num].dis=dis;
e[num].from=from;
head[from]=num;
}
/*TOPSORT*/
int dis[man];
bool vis[man],flag=0;
int cnt[man]={0};
inline int spfa(int s)
{ queue<int >q;
q.push(s);dis[s]=0;vis[s]=1;
do
{
int u=q.front();q.pop();
vis[u]=0;
for(int i=head[u];i;i=e[i].next)
{
ll to=e[i].to;
if(dis[to]>dis[u]+e[i].dis)
{ dis[to]=dis[u]+e[i].dis;
if(!vis[to])
{
q.push(to);
vis[to]=1;
cnt[to]++;
}
if(cnt[to]>n) return 1;
}
}
}while(q.size());
return 0;
}
int main()
{ read(n);read(m);
for(int i=1;i<=m;i++)
{ int x,y,z;
read(x);read(y);read(z);
add(y,x,z);
}
for(int i=1;i<=n;i++)
add(0,i,0);
memset(vis,0,sizeof(vis));
memset(dis,0x7f,sizeof(dis));
if(spfa(0)==1) {printf("NO SOLUTION\n");return 0;}
int minn=2000000000;
for(int i=1;i<=n;i++)
minn=min(minn,dis[i]);
for(int i=1;i<=n;i++)
printf("%d\n",dis[i]-minn);
return 0;
}

  

洛谷 P1260 工程规划(差分约束)的更多相关文章

  1. 洛谷—— P1260 工程规划

    https://www.luogu.org/problem/show?pid=1260 题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000). ...

  2. P1260 工程规划 (差分约束)

    题目链接 Solution 差分约束. 差分约束似乎精髓就两句话: 当我们把不等式整理成 \(d[a]+w<=d[b]\) 时,我们求最长路. 整理成 \(d[a]+w>=d[b]\) 时 ...

  3. 题解——洛谷P1250 种树(差分约束)

    一道看一眼就知道差分约束的题目 但是最短路spfa的时候注意松弛条件是 if(dis[u]+w[i]<dis[v[i]]) dis[v[i]]=dis[u]+w[i]; 不能写成 if(dis[ ...

  4. 洛谷2474 [SCOI2008] 天平 差分约束->枚举

    题目描述 你有n个砝码,均为1克,2克或者3克.你并不清楚每个砝码的重量,但你知道其中一些砝码重量的大小关系.你把其中两个砝码A 和B 放在天平的左边,需要另外选出两个砝码放在天平的右边.问:有多少种 ...

  5. 洛谷P3275 [SCOI2011]糖果(差分约束)

    题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  6. 2021.08.16 P1260 工程规划(差分约束)

    2021.08.16 P1260 工程规划(差分约束) 重点: 1.跑最短路是为了满足更多约束条件. P1260 工程规划 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 造 ...

  7. luogu P1260 工程规划(luogu wa)don't know way

    题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000).由于对一些任务的起始条件有着严格的限制,所以每个任务的起始时间T1,T2,…,Tn并不是 ...

  8. luogu P1260 工程规划

    题目描述 造一幢大楼是一项艰巨的工程,它是由n个子任务构成的,给它们分别编号1,2,…,n(5≤n≤1000).由于对一些任务的起始条件有着严格的限制,所以每个任务的起始时间T1,T2,…,Tn并不是 ...

  9. 洛谷P3397 地毯(差分)

    二维平面上的差分,我们可以对每行处理. 比如我们要把(2,2)(5,5)之间的矩形加上1,可以这样处理. 0 0 0 0 0 0 0 +1 0 0 0 -1 0 +1 0 0 0 -1 0 +1 0 ...

随机推荐

  1. goldendict

    linux下的翻译词典,可以添加在线和离线词典,比window下的有道感觉强的不止100倍. 点击编辑—>dictionary,可以添加在线和离线词典,最好添加离线的把,我添加了好多在线的,go ...

  2. jmap打dump异常

    背景 用jmap打dump文件经常遇到如下异常,打不出来,哥今天告拆大家一个终极解决方法,嘘,不要告拆别人.. Attaching to core -F from executable 421442, ...

  3. [NOI2018]归程(可持久化并查集,Kruskal重构树)

    解法一: 1.首先想到离线做法:将边和询问从大到小排序,并查集维护连通块以及每个连通块中所有点到1号点的最短距离.$O(n\log n)$ 配合暴力等可以拿到75分. 2.很容易想到在线做法,使用可持 ...

  4. bzoj2337 XOR和路径

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2337 首先:因为是异或和,所以可以考虑每一位考虑. 就在每一位上求一下该位是1的概率,乘以1 ...

  5. 设置cassandra用户名和密码

    参考http://zhaoyanblog.com/archives/307.html 修改cassandra.yaml配置文件 把默认的 authenticator: AllowAllAuthenti ...

  6. 黄聪:360浏览器、chrome开发扩展插件教程(1)开发Chrome Extenstion其实很简单

    转载:http://www.cnblogs.com/walkingp/archive/2011/03/31/2001628.html Chrome的更新速度可以说前无古人,现在我每天开机的第一件事就是 ...

  7. 【转】Java中的内部类和匿名类

       Java内部类(Inner Class),类似的概念在C++里也有,那就是嵌套类(Nested Class),乍看上去内部类似乎有些多余,它的用处对于初学者来说可能并不是那么显著,但是随着对它的 ...

  8. Java 迭代器 Iterator

    迭代器模式 迭代器模式(Iterator Pattern)是 Java 和 .Net 编程环境中非常常用的设计模式.这种模式用于顺序访问集合对象的元素,不需要知道集合对象的底层表示. 迭代器模式属于行 ...

  9. Windows 10 修改系统环境变量后,CMD生效,Powershell未生效

    Windows 10 修改系统环境变量后 1.CMD重新打开,新环境变量已经生效: 2.Shift+右键Powershell重新打开,新环境变量没有生效: 3.貌似服务(Apache24)中使用的环境 ...

  10. [Spring] Resource 资源

    import ch.qos.logback.core.net.SyslogOutputStream; import org.springframework.core.io.ClassPathResou ...