由于word2vec有两种改进方法,一种是基于Hierarchical Softmax的,另一种是基于Negative Sampling的。本文关注于基于Hierarchical Softmax的改进方法,在下一篇讨论基于Negative Sampling的改进方法。

1. 基于Hierarchical Softmax的模型概述

我们先回顾下传统的神经网络词向量语言模型,里面一般有三层,输入层(词向量),隐藏层和输出层(softmax层)。里面最大的问题在于从隐藏层到输出的softmax层的计算量很大,因为要计算所有词的softmax概率,再去找概率最大的值。这个模型如下图所示。其中V是词汇表的大小.

word2vec对这个模型做了改进,首先,对于从输入层到隐藏层的映射,没有采取神经网络的线性变换加激活函数的方法,而是采用简单的对所有输入词向量求和并取平均的方法。比如输入的是三个4维词向量:(1,2,3,4),(9,6,11,8),那么我们word2vec映射后的词向量就是(5,6,7,8).

第二个改进就是从隐藏层到输出的softmax层这里的计算量个改进。为了避免要计算所有词的softmax概率,word2vec采样了霍夫曼树来代替从隐藏层到输出softmax层的映射。我们在上一节已经介绍了霍夫曼树的原理。如何映射呢?这里就是理解word2vec的关键所在了。

由于我们把之前所有都要计算的从输出softmax层的概率计算变成了一颗二叉霍夫曼树,那么我们的softmax概率计算只需要沿着树形结构进行就可以了。如下图所示,我们可以沿着霍夫曼树从根节点一直走到我们的叶子节点的词w_2处.

和之前的神经网络语言模型相比,我们的霍夫曼树的所有内部节点就类似之前神经网络隐藏层的神经元,其中,根节点的词向量对应我们的投影后的词向量,而所有叶子节点就类似于之前神经网络softmax输出层的神经元,叶子节点的个数就是词汇表的大小。在霍夫曼树中,隐藏层到输出层的softmax映射不是一下子完成的,而是沿着霍夫曼树一步步完成的,因此这种softmax取名为"Hierarchical Softmax"。

如何“沿着霍夫曼树一步步完成”呢?在word2vec中,我们采用了二元逻辑回归的方法,即规定沿着左子树走,那么就是负类(霍夫曼树编码1),沿着右子树走,那么就是正类(霍夫曼树编码0)。判别正类和负类的方法是使用sigmoid函数,即:

$P(+) = \sigma(x_w^T\theta) = \frac{1}{1+e^{-x_w^T\theta} }$

其中$x_w$是当前内部节点的词向量,而θ则是我们需要从训练样本求出的逻辑回归的模型参数。

使用霍夫曼树有什么好处呢?首先,由于是二叉树,之前计算量为$V$,现在变成了$log_2V$.第二,由于使用霍夫曼树是高频的词靠近树根,这样高频词需要更少的时间会被找到,这符合我们的贪心优化思想。

容易理解,被划分为左子树而成为负类的概率为$P(-)=1-P(+)$.在某一个内部节点,要判断是沿左子树还是右子树走的标准就是看$P(-),P(+)$谁的概率值大.而控制$P(-),P(+)$谁的概率值大的因素一个是当前节点的词向量,另一个是当前节点的模型参数$\theta$的值了对于上图中的$w_2$,如果它是一个训练样本的输出,那么我们期望对于里面的隐藏节点$n(w_2,1)$的P(-)概率大,$n(w_2,2)$的P(-)概率大,$n(w_2,3)$的P(+)概率大

回到基于Hierarchical Softmax的word2vec本身,我们的目标就是找到合适的所有节点的词向量和所有内部节点θ, 使训练样本达到最大似然。那么如何达到最大似然呢?

2. 基于Hierarchical Softmax的模型梯度计算

我们使用最大似然法来寻找所有节点的词向量和所有内部节点$\theta$,先拿上面的$w_2$例子来看,我们期望最大化下面的似然函数:

$\prod_{i=1}^3P(n(w_i),i) = (1- \frac{1}{1+e^{-x_w^T\theta_1}})(1- \frac{1}{1+e^{-x_w^T\theta_2}})\frac{1}{1+e^{-x_w^T\theta_3}}$

对于所有的训练样本,我们期望最大化所有样本的似然函数乘积。

为了便于我们后面一般化的描述,我们定义输入的词为$w$,其从输入层词向量求和平均后的霍夫曼树根节点词向量为$x_w$,从根节点到$w$所在的叶子节点,包含的节点总数为$l_w$,w在霍夫曼树中从根节点开始,经过的第i个节点表示为$P_i^w$,对应的霍夫曼编码

为$d_i^w\in\{0,1\}$,其中i=2,3.....$l_w$.而该节点对应的模型参数表示为$\theta_i^w$,其中i=1,2....$l_w$-1,没有i=$l_w$是因为模型参数仅仅针对于霍夫曼树的内部节点。

定义w经过的霍夫曼树某一个节点j的逻辑回归概率为$P(d_j^w|x_w, \theta_{j-1}^w)$,其表达式为:

$P(d_j^w|x_w, \theta_{j-1}^w)= \begin{cases}  \sigma(x_w^T\theta_{j-1}^w)& {d_j^w=0}\\ 1-  \sigma(x_w^T\theta_{j-1}^w) & {d_j^w = 1} \end{cases}$

那么对于某一个目标输出词w,其最大似然为:

$\prod_{j=2}^{l_w}P(d_j^w|x_w, \theta_{j-1}^w) = \prod_{j=2}^{l_w} [\sigma(x_w^T\theta_{j-1}^w)] ^{1-d_j^w}[1-\sigma(x_w^T\theta_{j-1}^w)]^{d_j^w}$

在word2vec中,由于使用的是随机梯度上升法,所以并没有把所有样本的似然乘起来得到真正的训练集最大似然,仅仅每次只用一个样本更新梯度,这样做的目的是减少梯度计算量。这样我们可以得到w大的对数似然函数L如下:

$L= log \prod_{j=2}^{l_w}P(d_j^w|x_w, \theta_{j-1}^w) = \sum\limits_{j=2}^{l_w} ((1-d_j^w) log [\sigma(x_w^T\theta_{j-1}^w)]  + d_j^w log[1-\sigma(x_w^T\theta_{j-1}^w)])$

要得到模型中w词向量和内部节点的模型参数$\theta$,我们使用梯度上升法即可.首先我们求出模型参数$\theta_{j-1}^w$的梯度:$\begin{align} \frac{\partial L}{\partial \theta_{j-1}^w} & = (1-d_j^w)\frac{(\sigma(x_w^T\theta_{j-1}^w)(1-\sigma(x_w^T\theta_{j-1}^w)}{\sigma(x_w^T\theta_{j-1}^w)}x_w - d_j^w \frac{(\sigma(x_w^T\theta_{j-1}^w)(1-\sigma(x_w^T\theta_{j-1}^w)}{1- \sigma(x_w^T\theta_{j-1}^w)}x_w  \\ & =  (1-d_j^w)(1-\sigma(x_w^T\theta_{j-1}^w))x_w -  d_j^w\sigma(x_w^T\theta_{j-1}^w)x_w \\& = (1-d_j^w-\sigma(x_w^T\theta_{j-1}^w))x_w \end{align}$

同样的方法,可以求出$x_w$的梯度表达式如下:

$\frac{\partial L}{\partial x_w} = \sum\limits_{j=2}^{l_w}(1-d_j^w-\sigma(x_w^T\theta_{j-1}^w))\theta_{j-1}^w$

有了梯度表达式,我们就可以用梯度上升法进行迭代来一步步的求解我们需要的所有的$\theta_{j-1}^w$和$x_w$.

3. 基于Hierarchical Softmax的CBOW模型

...

Word2Vec实现原理(Hierarchical Softmax)的更多相关文章

  1. word2vec改进之Hierarchical Softmax

    首先Hierarchical Softmax是word2vec的一种改进方式,因为传统的word2vec需要巨大的计算量,所以该方法主要有两个改进点: 1. 对于从输入层到隐藏层的映射,没有采取神经网 ...

  2. word2vec原理(二) 基于Hierarchical Softmax的模型

    word2vec原理(一) CBOW与Skip-Gram模型基础 word2vec原理(二) 基于Hierarchical Softmax的模型 word2vec原理(三) 基于Negative Sa ...

  3. word2vec 中的数学原理具体解释(四)基于 Hierarchical Softmax 的模型

      word2vec 是 Google 于 2013 年开源推出的一个用于获取 word vector 的工具包,它简单.高效,因此引起了非常多人的关注.因为 word2vec 的作者 Tomas M ...

  4. DL4NLP——词表示模型(三)word2vec(CBOW/Skip-gram)的加速:Hierarchical Softmax与Negative Sampling

    上篇博文提到,原始的CBOW / Skip-gram模型虽然去掉了NPLM中的隐藏层从而减少了耗时,但由于输出层仍然是softmax(),所以实际上依然“impractical”.所以接下来就介绍一下 ...

  5. 词表征 2:word2vec、CBoW、Skip-Gram、Negative Sampling、Hierarchical Softmax

    原文地址:https://www.jianshu.com/p/5a896955abf0 2)基于迭代的方法直接学 相较于基于SVD的方法直接捕获所有共现值的做法,基于迭代的方法一次只捕获一个窗口内的词 ...

  6. word2vec 数学原理

    word2vec 是 Google 于 2013 年推出的一个用于获取词向量的开源工具包.我们在项目中多次使用到它,但囿于时间关系,一直没仔细探究其背后的原理. 网络上 <word2vec 中的 ...

  7. 层次softmax函数(hierarchical softmax)

    一.h-softmax 在面对label众多的分类问题时,fastText设计了一种hierarchical softmax函数.使其具有以下优势: (1)适合大型数据+高效的训练速度:能够训练模型“ ...

  8. Word2Vector 中的 Hierarchical Softmax

    Overall Introduction 之前我们提过基于可以使用CBOW或者SKIP-GRAM来捕捉预料中的token之间的关系,然后生成对应的词向量. 常规做法是我们可以直接feed DNN进去训 ...

  9. [DeeplearningAI笔记]序列模型2.6Word2Vec/Skip-grams/hierarchical softmax classifier 分级softmax 分类器

    5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 Word2Vec Word2Vec相对于原先介绍的词嵌入的方法来说更加的简单快速. Mikolov T, Chen ...

随机推荐

  1. android -------- java虚拟机和Dalvik虚拟机

    java虚拟机 虚拟机是一种抽象化的计算机,通过在实际的计算机上仿真模拟各种计算机功能来实现的.Java虚拟机有自己完善的硬体架构,如处理器.堆栈.寄存器等,还具有相应的指令系统.Java虚拟机屏蔽了 ...

  2. apicloud 按返回键

    api.addEventListener({ name: 'keyback' }, function(ret, err) { //调取index.html暴露的方法 api.execScript({ ...

  3. 第二阶段——个人工作总结DAY04

    1.昨天做了什么:实现所有需要跳转活动的点击事件. 2.今天打算做什么:打算把值能够传递过去. 3.遇到的困难:无

  4. 为什么样本方差除以(n-1)而不是n ?(自由度)

    不记得第几次看见样本方差的公式,突然好奇为什么要除以(n-1)而不是n呢?看见一篇文章从定义上和无偏估计推导上讲的很清楚https://blog.csdn.net/fuming2021118535/a ...

  5. maven聚合工程使用如何debug

    maven聚合工程在正常情况下,使用debug时会出错,因为没有源码,就不会显示代码和断点行数条. 进行如下操作: 默认情况下source下只有默认的default文件夹,点击remove进行删除(这 ...

  6. VCG(VisualCodeGrepper)安装使用教程

    一.说明 代码审计工具看来还是比较难做,一是开源的代码审计工具少,二是原本的一些开源审计工具很多都不更新甚至不能使用了. VCG支持审计C++.Java.C#.PHP和VB,但其“审计”基本相当于函数 ...

  7. e2e 测试(1)

    距离上一随笔,已经有一个月没有没写.到今天,刚刚好好,是学习e2e测试的一个月.今天有点时间可以总结一下这个月来的收获. 1.搭建e2e的测试环境 我是使用 Vue 构建项目,所以我也是通过Vue-c ...

  8. python javar send

    # -*- coding: utf-8 -*-import jpypeimport os.pathjarpath = os.path.join(os.path.abspath('.'), 'axja' ...

  9. Node.js是用来干嘛的

    如果你去年注意过技术方面的新闻,我敢说你至少看到node.js不下一两次.那么问题来了“node.js是什么?”.有些人没准会告诉你“这是一种通过JavaScript语言开发web服务端的东西”.如果 ...

  10. matlab 调试日志

    debug=; diary off if debug delete('log.txt'); !del log.txt diary('log.txt'); diary ON end diary OFF