转载自:https://www.cnblogs.com/luoxn28/p/5767571.html

1 二分查找

  二分查找是一个基础的算法,也是面试中常考的一个知识点。二分查找就是将查找的键和子数组的中间键作比较,如果被查找的键小于中间键,就在左子数组继续查找;如果大于中间键,就在右子数组中查找,否则中间键就是要找的元素。

(图片来自《算法-第4版》)

/**
* 二分查找,找到该值在数组中的下标,否则为-1
*/
static int binarySerach(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] == key) {
return mid;
}
else if (array[mid] < key) {
left = mid + 1;
}
else {
right = mid - 1;
}
} return -1;
}

  每次移动left和right指针的时候,需要在mid的基础上+1或者-1, 防止出现死循环, 程序也就能够正确的运行。

  注意:代码中的判断条件必须是while (left <= right),否则的话判断条件不完整,比如:array[3] = {1, 3, 5};待查找的键为5,此时在(low < high)条件下就会找不到,因为low和high相等时,指向元素5,但是此时条件不成立,没有进入while()中。

2 二分查找的变种

  关于二分查找,如果条件稍微变换一下,比如:数组之中的数据可能可以重复,要求返回匹配的数据的最小(或最大)的下标;更近一步, 需要找出数组中第一个大于key的元素(也就是最小的大于key的元素的)下标,等等。 这些,虽然只有一点点的变化,实现的时候确实要更加的细心。

  二分查找的变种和二分查找原理一样,主要就是变换判断条件(也就是边界条件),如果想直接看如何记忆这些变种的窍门,请直接翻到本文最后。下面来看几种二分查找变种的代码:

2.1 查找第一个与key相等的元素

  查找第一个相等的元素,也就是说等于查找key值的元素有好多个,返回这些元素最左边的元素下标。

// 查找第一个相等的元素
static int findFirstEqual(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
if (left < array.length && array[left] == key) {
return left;
} return -1;
}

2.2 查找最后一个与key相等的元素

  查找最后一个相等的元素,也就是说等于查找key值的元素有好多个,返回这些元素最右边的元素下标。

// 查找最后一个相等的元素
static int findLastEqual(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] <= key) {
left = mid + 1;
}
else {
right = mid - 1;
}
}
if (right >= 0 && array[right] == key) {
return right;
} return -1;
}

2.3 查找最后一个等于或者小于key的元素

  查找最后一个等于或者小于key的元素,也就是说等于查找key值的元素有好多个,返回这些元素最右边的元素下标;如果没有等于key值的元素,则返回小于key的最右边元素下标。

// 查找最后一个等于或者小于key的元素
static int findLastEqualSmaller(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] > key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return right;
}

2.4 查找最后一个小于key的元素

  查找最后一个小于key的元素,也就是说返回小于key的最右边元素下标。

// 查找最后一个小于key的元素
static int findLastSmaller(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return right;
}

2.5 查找第一个等于或者大于key的元素

  查找第一个等于或者大于key的元素,也就是说等于查找key值的元素有好多个,返回这些元素最左边的元素下标;如果没有等于key值的元素,则返回大于key的最左边元素下标。

// 查找第一个等于或者大于key的元素
static int findFirstEqualLarger(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return left;
}

2.6 查找第一个大于key的元素

  查找第一个等于key的元素,也就是说返回大于key的最左边元素下标。

// 查找第一个大于key的元素
static int findFirstLarger(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] > key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return left;
}

3 二分查找变种总结

// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] ? key) {
//... right = mid - 1;
}
else {
// ... left = mid + 1;
}
}
return xxx;

  二分查找变种较多,不过它们的“套路”是一样的,以上代码就是其套路,如何快速写出二分查找的代码,只需按照以下步骤即可:

1 首先判断出是返回left,还是返回right

  因为我们知道最后跳出while (left <= right)循环条件是right < left,且right = left - 1。最后right和left一定是卡在"边界值"的左右两边,如果是比较值为key,查找小于等于(或者是小于)key的元素,则边界值就是等于key的所有元素的最左边那个,其实应该返回left。

  以数组{1, 2, 3, 3, 4, 5}为例,如果需要查找第一个等于或者小于3的元素下标,我们比较的key值是3,则最后left和right需要满足以下条件:

  我们比较的key值是3,所以此时我们需要返回left。

2 判断出比较符号

int mid = (left + right) / 2;
if (array[mid] ? key) {
//... right = xxx;
}
else {
// ... left = xxx;
}

  也就是这里的 if (array[mid] ? key) 中的判断符号,结合步骤1和给出的条件,如果是查找小于等于key的元素,则知道应该使用判断符号>=,因为是要返回left,所以如果array[mid]等于或者大于key,就应该使用>=,以下是完整代码

// 查找小于等于key的元素
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}

二分查找(lower_bound和upper_bound)的更多相关文章

  1. STL中的二分查找——lower_bound 、upper_bound 、binary_search

    STL中的二分查找函数 1.lower_bound函数 在一个非递减序列的前闭后开区间[first,last)中.进行二分查找查找某一元素val.函数lower_bound()返回大于或等于val的第 ...

  2. LeetCode:Search Insert Position,Search for a Range (二分查找,lower_bound,upper_bound)

    Search Insert Position Given a sorted array and a target value, return the index if the target is fo ...

  3. STL中的二分查找———lower_bound,upper_bound,binary_search

    关于STL中的排序和检索,排序一般用sort函数即可,今天来整理一下检索中常用的函数——lower_bound , upper_bound 和 binary_search . STL中关于二分查找的函 ...

  4. Long Jumps(二分查找lower_bound()函数的运用)

    Valery is a PE teacher at a school in Berland. Soon the students are going to take a test in long ju ...

  5. HDU 5178:pairs(二分,lower_bound和upper_bound)

    pairs Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  6. 线段树离散化 unique + 二分查找 模板 (转载)

    离散化,把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率. 通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小.例如: 原数据:1,999,100000,15:处理 ...

  7. 徒手实现lower_bound和upper_bound

    STL中lower_bound和upper_bound的使用方法:STL 二分查找 lower_bound: ; ; //初始化 l ,为第一个合法地址 ; //初始化 r , 地址的结束地址 int ...

  8. 分治算法(二分查找)、STL函数库的应用第五弹——二分函数

    分治算法:二分查找!昨天刚说不写算法了,但是突然想起来没写过分治算法的博客,所以强迫症的我…… STL函数库第五弹——二分函数lower_bound().upper_bound().binary_se ...

  9. STL 二分查找三兄弟(lower_bound(),upper_bound(),binary_search())

    一:起因 (1)STL中关于二分查找的函数有三个:lower_bound .upper_bound .binary_search  -- 这三个函数都运用于有序区间(当然这也是运用二分查找的前提),以 ...

  10. 二分查找法(binary_search,lower_bound,upper_bound,equal_range)

    binary_search(二分查找) //版本一:调用operator<进行比较 template <class ForwardIterator,class StrictWeaklyCo ...

随机推荐

  1. 【调试】Idea如何远程debug之SpringBoot jar包启动

    一.Java -jar启动添加如下参数 -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address= -Xdebug是通知JVM工 ...

  2. LeetCode--405--数字转化为十六进制数

    问题描述: 给定一个整数,编写一个算法将这个数转换为十六进制数.对于负整数,我们通常使用 补码运算 方法. 注意: 十六进制中所有字母(a-f)都必须是小写. 十六进制字符串中不能包含多余的前导零.如 ...

  3. vux弹框显示

    //点击按钮,执行什么成功,失败用这个合适this.$vux.toast.show({ text: '添加成功'}) //点击按钮,提示出现的问题 this.$vux.toast.show({ tex ...

  4. Linux中磁盘分区——理论篇

    Linux中磁盘分区——理论篇 现在主流的分区的方式有两种——MBR分区和GPT分区,本文将着重介绍MBR分区底层原理,及用相关命令验证相关原理 Linux中磁盘分区理论篇 为什么要对磁盘进行分区 M ...

  5. Linux命令详解-file

    file命令用来识别文件类型,也可用来辨别一些文件的编码格式.它是通过查看文件的头部信息来获取文件类型,而不是像Windows通过扩展名来确定文件类型的. 1.命令格式: file [ -bchikL ...

  6. python记录_day30 多进程

    1.什么是进程 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础. 同一个程序执行两次,就会产生两个进程 ## 进程调度算 ...

  7. Oracle 数据库中查看表空间的2种方法

    在Oracle数据库中查看表空间使用状况是我们在实际应用中经常涉及到的,以下的内容就就是对Oracle 数据库中查看表空间使用状况时所要用到的SQL的描述,希望你能从中获得自己想要的东西. Oracl ...

  8. [CodeForces - 614D] D - Skills

    D - Skills Lesha plays the recently published new version of the legendary game hacknet. In this ver ...

  9. ssl tls 证书链 根证书和叶证书查询

    你基本上需要做的是构建一个证书链,如果你没有得到它作为一个链.证书链基本上由第零个位置的最终实体证书(也是叶证书,链中最重要的证书)组成,其次是次要证书. CA证书是最不重要的. 所以这是通常的X.5 ...

  10. VMware如何进入安全模式

    VMware进入安全模式和物理机一样:使光标处于在虚拟机中激活状态,启动系统时不停按F8即可. 安全模式--只加载必要的驱动和进程:在cmd可以看到部份命令不能执行或命令功能不能完全实现. 网络安全模 ...