二分查找(lower_bound和upper_bound)
转载自:https://www.cnblogs.com/luoxn28/p/5767571.html
1 二分查找
二分查找是一个基础的算法,也是面试中常考的一个知识点。二分查找就是将查找的键和子数组的中间键作比较,如果被查找的键小于中间键,就在左子数组继续查找;如果大于中间键,就在右子数组中查找,否则中间键就是要找的元素。
(图片来自《算法-第4版》)

/**
* 二分查找,找到该值在数组中的下标,否则为-1
*/
static int binarySerach(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] == key) {
return mid;
}
else if (array[mid] < key) {
left = mid + 1;
}
else {
right = mid - 1;
}
} return -1;
}

每次移动left和right指针的时候,需要在mid的基础上+1或者-1, 防止出现死循环, 程序也就能够正确的运行。
注意:代码中的判断条件必须是while (left <= right),否则的话判断条件不完整,比如:array[3] = {1, 3, 5};待查找的键为5,此时在(low < high)条件下就会找不到,因为low和high相等时,指向元素5,但是此时条件不成立,没有进入while()中。
2 二分查找的变种
关于二分查找,如果条件稍微变换一下,比如:数组之中的数据可能可以重复,要求返回匹配的数据的最小(或最大)的下标;更近一步, 需要找出数组中第一个大于key的元素(也就是最小的大于key的元素的)下标,等等。 这些,虽然只有一点点的变化,实现的时候确实要更加的细心。
二分查找的变种和二分查找原理一样,主要就是变换判断条件(也就是边界条件),如果想直接看如何记忆这些变种的窍门,请直接翻到本文最后。下面来看几种二分查找变种的代码:
2.1 查找第一个与key相等的元素
查找第一个相等的元素,也就是说等于查找key值的元素有好多个,返回这些元素最左边的元素下标。

// 查找第一个相等的元素
static int findFirstEqual(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
if (left < array.length && array[left] == key) {
return left;
} return -1;
}

2.2 查找最后一个与key相等的元素
查找最后一个相等的元素,也就是说等于查找key值的元素有好多个,返回这些元素最右边的元素下标。

// 查找最后一个相等的元素
static int findLastEqual(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] <= key) {
left = mid + 1;
}
else {
right = mid - 1;
}
}
if (right >= 0 && array[right] == key) {
return right;
} return -1;
}

2.3 查找最后一个等于或者小于key的元素
查找最后一个等于或者小于key的元素,也就是说等于查找key值的元素有好多个,返回这些元素最右边的元素下标;如果没有等于key值的元素,则返回小于key的最右边元素下标。

// 查找最后一个等于或者小于key的元素
static int findLastEqualSmaller(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] > key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return right;
}

2.4 查找最后一个小于key的元素
查找最后一个小于key的元素,也就是说返回小于key的最右边元素下标。

// 查找最后一个小于key的元素
static int findLastSmaller(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return right;
}

2.5 查找第一个等于或者大于key的元素
查找第一个等于或者大于key的元素,也就是说等于查找key值的元素有好多个,返回这些元素最左边的元素下标;如果没有等于key值的元素,则返回大于key的最左边元素下标。

// 查找第一个等于或者大于key的元素
static int findFirstEqualLarger(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return left;
}

2.6 查找第一个大于key的元素
查找第一个等于key的元素,也就是说返回大于key的最左边元素下标。

// 查找第一个大于key的元素
static int findFirstLarger(int[] array, int key) {
int left = 0;
int right = array.length - 1; // 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] > key) {
right = mid - 1;
}
else {
left = mid + 1;
}
}
return left;
}

3 二分查找变种总结

// 这里必须是 <=
while (left <= right) {
int mid = (left + right) / 2;
if (array[mid] ? key) {
//... right = mid - 1;
}
else {
// ... left = mid + 1;
}
}
return xxx;

二分查找变种较多,不过它们的“套路”是一样的,以上代码就是其套路,如何快速写出二分查找的代码,只需按照以下步骤即可:
1 首先判断出是返回left,还是返回right
因为我们知道最后跳出while (left <= right)循环条件是right < left,且right = left - 1。最后right和left一定是卡在"边界值"的左右两边,如果是比较值为key,查找小于等于(或者是小于)key的元素,则边界值就是等于key的所有元素的最左边那个,其实应该返回left。
以数组{1, 2, 3, 3, 4, 5}为例,如果需要查找第一个等于或者小于3的元素下标,我们比较的key值是3,则最后left和right需要满足以下条件:
我们比较的key值是3,所以此时我们需要返回left。
2 判断出比较符号

int mid = (left + right) / 2;
if (array[mid] ? key) {
//... right = xxx;
}
else {
// ... left = xxx;
}

也就是这里的 if (array[mid] ? key) 中的判断符号,结合步骤1和给出的条件,如果是查找小于等于key的元素,则知道应该使用判断符号>=,因为是要返回left,所以如果array[mid]等于或者大于key,就应该使用>=,以下是完整代码

// 查找小于等于key的元素
int mid = (left + right) / 2;
if (array[mid] >= key) {
right = mid - 1;
}
else {
left = mid + 1;
}

二分查找(lower_bound和upper_bound)的更多相关文章
- STL中的二分查找——lower_bound 、upper_bound 、binary_search
STL中的二分查找函数 1.lower_bound函数 在一个非递减序列的前闭后开区间[first,last)中.进行二分查找查找某一元素val.函数lower_bound()返回大于或等于val的第 ...
- LeetCode:Search Insert Position,Search for a Range (二分查找,lower_bound,upper_bound)
Search Insert Position Given a sorted array and a target value, return the index if the target is fo ...
- STL中的二分查找———lower_bound,upper_bound,binary_search
关于STL中的排序和检索,排序一般用sort函数即可,今天来整理一下检索中常用的函数——lower_bound , upper_bound 和 binary_search . STL中关于二分查找的函 ...
- Long Jumps(二分查找lower_bound()函数的运用)
Valery is a PE teacher at a school in Berland. Soon the students are going to take a test in long ju ...
- HDU 5178:pairs(二分,lower_bound和upper_bound)
pairs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
- 线段树离散化 unique + 二分查找 模板 (转载)
离散化,把无限空间中有限的个体映射到有限的空间中去,以此提高算法的时空效率. 通俗的说,离散化是在不改变数据相对大小的条件下,对数据进行相应的缩小.例如: 原数据:1,999,100000,15:处理 ...
- 徒手实现lower_bound和upper_bound
STL中lower_bound和upper_bound的使用方法:STL 二分查找 lower_bound: ; ; //初始化 l ,为第一个合法地址 ; //初始化 r , 地址的结束地址 int ...
- 分治算法(二分查找)、STL函数库的应用第五弹——二分函数
分治算法:二分查找!昨天刚说不写算法了,但是突然想起来没写过分治算法的博客,所以强迫症的我…… STL函数库第五弹——二分函数lower_bound().upper_bound().binary_se ...
- STL 二分查找三兄弟(lower_bound(),upper_bound(),binary_search())
一:起因 (1)STL中关于二分查找的函数有三个:lower_bound .upper_bound .binary_search -- 这三个函数都运用于有序区间(当然这也是运用二分查找的前提),以 ...
- 二分查找法(binary_search,lower_bound,upper_bound,equal_range)
binary_search(二分查找) //版本一:调用operator<进行比较 template <class ForwardIterator,class StrictWeaklyCo ...
随机推荐
- Vue.js表单校验;动画指令;避免内存泄露。
Vue.js表单校验: 动画指令:创建自定义的滚动指令. 避免内存泄露. 避免内存泄露 在单页面应用开发时SPA,用户无需刷新浏览器.所以javascript应用需要自行清理组件来防止内存占用不断增长 ...
- 『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上
GAN网络架构分析 上图即为GAN的逻辑架构,其中的noise vector就是特征向量z,real images就是输入变量x,标签的标准比较简单(二分类么),real的就是tf.ones,fake ...
- POJ-3041-建图/二分图匹配/网络流
Asteroids Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 26351 Accepted: 14254 Descr ...
- 使用ajax请求接口,跨域后cookie无法设置,全局配置ajax;及使用axios跨域后cookie无法设置,全局配置axios
问题一: 使用ajax/axios跨域请求接口,后端放行了,能够正常获取数据,但是cookie设置不进去,后端登录session判断失效 ajax解决办法: //设置ajax属性 crossDomai ...
- SQLServer 2008以上误操作数据库恢复方法—日志尾部备份
原文出处:http://blog.csdn.net/dba_huangzj/article/details/8491327 问题: 经常看到有人误删数据,或者误操作,特别是update和delete的 ...
- 解决 TCP_socket 粘包问题
所谓粘包问题主要还是C/S两端数据传输时 因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的 根本原因:粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多 ...
- Linux Shell获取系统资源使用百分比(CentOS)
CPU使用率: top -b -n | | 内存使用率: free -m | grep '^-' | awk '{print $3/($3+$4)*100"%"}' IO使用率(F ...
- 在springboot中用redis实现消息队列
环境依赖 创建一个新的springboot工程,在其pom文件,加入spring-boot-starter-data-redis依赖: <dependency> <groupId&g ...
- Java版本知识
1zip是压缩包,而MSI文件是Windows Installer的数据包,它实际上是一个数据库,包含安装一种产品所需要的信息和在很多安装情形下安装(和卸载)程序所需的指令和数据,只要系统中包含win ...
- Win10系列:VC++媒体播放控制3
(5)添加视频进度条 视频进度条可以用来显示当前视频的播放进度,并可以通过拖动视频进度条来改变视频的播放进度.接下来介绍如何实现视频进度条,首先打开MainPage.xaml文件,并在Grid元素中添 ...