loj#2665. 「NOI2013」树的计数
目录
题目链接
题解
求树高的期望
对bfs序分层
考虑同时符合dfs和bfs序的树满足什么条件
第一个点要强制分层
对于bfs序连续的a,b两点,若a的bfs序小于b的bfs序,且a的dfs序大于b的,那么它们之间肯定要分层,对答案贡献为1
对于dfs序连续的a,b两点,若a的dfs序小于b的,且a的bfs序也小于b,那么它们的深度差不超过1,也就是说它们在的bfs序上之间最多分一层
先把前两个条件都判一下,然后把第2个条件判一下(如果它们之间已经分层了,那么就强制其他的不分层)
最后剩下的可分层可不分的点,贡献是0.5
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#define gc getchar()
#define pc putchar
inline int read() {
int x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') c = gc;
while(c <= '9' && c >= '0') x = x * 10 + c - '0',c = gc;
return x * f;
}
void print(int x) {
if(x < 0) {
pc('-');
x = -x;
}
if(x >= 10) print(x / 10);
pc(x % 10 + '0');
}
const int maxn = 200007;
int n,top = 0,q[maxn];
double ans = 0;
int P[maxn],D[maxn],B[maxn];
int x[maxn],y[maxn];
inline void mark(int a,int b) {
++ y[a], -- y[b];
}
int main() {
n = read();
for(int j,i = 1;i <= n;++ i) P[j = read()] = i; //dfs中第j个点排在第i位
for(int j,i = 1;i <= n;++ i) D[B[i] = P[j = read()]] = i;
//B:bfs序中排在第i的点在dfs序中排B[i]
//D:dfs序中排在第i的点在bfs序中排D[i]
for(int i = 1;i < n;++ i) {
x[i] = x[i - 1];
if(i == 1 || B[i] > B[i + 1]) //lev[i] < lev[i + 1]
ans += 2.0,
++ x[i],
mark(i,i + 1);
}
for(int i = 1;i < n;++ i) {
if(D[i] < D[i + 1]) {
if(x[D[i + 1] - 1] > x[D[i] - 1]) //层数小
mark(D[i],D[i + 1]);
else q[++ top] = D[i]; //
}
}
for(int i = 1;i <= n;++ i) y[i] = y[i] + y[i - 1];
for(int i = 1;i <= top;++ i) ans += (y[q[i]] == 0);
printf("%.3lf\n%.3lf\n%.3lf\n",ans / 2 + 1 - 0.001,ans / 2 + 1,ans / 2 + 1 + 0.001);
return 0;
}
loj#2665. 「NOI2013」树的计数的更多相关文章
- 【LOJ】 #2665. 「NOI2013」树的计数
题解 我们统计深度对于bfs序统计,树结构出现分歧的地方必然是BFS序的最后一段,这个最后一段同时还得是dfs序上连续的一段 如果不是bfs序的最后一段,那么必然下一层会有节点,如果树结构分歧了,那么 ...
- 「NOI2013」树的计数 解题报告
「NOI2013」树的计数 这什么神题 考虑对bfs重新编号为1,2,3...n,然后重新搞一下dfs序 设dfs序为\(dfn_i\),dfs序第\(i\)位对应的节点为\(pos_i\) 一个暴力 ...
- LOJ 2664. 「NOI2013」向量内积 解题报告
#2664. 「NOI2013」向量内积 两个 \(d\) 维向量 \(A=[a_1, a_2 ,...,a_d]\) 与 \(B=[b_1 ,b_2 ,...,b_d]\) 的内积为其相对应维度的权 ...
- LOJ #2359. 「NOIP2016」天天爱跑步(倍增+线段树合并)
题意 LOJ #2359. 「NOIP2016」天天爱跑步 题解 考虑把一个玩家的路径 \((x, y)\) 拆成两条,一条是 \(x\) 到 \(lca\) ( \(x, y\) 最近公共祖先) 的 ...
- Loj #2570. 「ZJOI2017」线段树
Loj #2570. 「ZJOI2017」线段树 题目描述 线段树是九条可怜很喜欢的一个数据结构,它拥有着简单的结构.优秀的复杂度与强大的功能,因此可怜曾经花了很长时间研究线段树的一些性质. 最近可怜 ...
- loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点
loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
随机推荐
- Linux系统7z文件解压
获取p7zip_16.02_src_all.tar.bz2 1.解压 tar jxvf p7zip_16.02_src_all.tar.bz2 2.编译 cd p7zip_16.02 make &am ...
- 初识numpy
from numpy import * 导入numpy包 random可以生成随机数组 通过mat函数,将数组转换成矩阵,可以对矩阵进行求逆计算等.其中.I操作实现了矩阵求逆计算操作. 执行矩阵乘 ...
- QQ空间说说如何批量删除
事件背景: 今天突发奇想,想把自己之前发的说说都删除了,结果就有了下面的代码 1.按F12 2.点击 Console,进入Console项 3.使用以下代码: var delay = 1000; fu ...
- Day6------------复习
文件归档:tar cvf test.tar 文件压缩:gzip 目标文件 bzip2 test,tar 文件解压:gunzip test.tar.gz bzip2 test.tar.bz2 文件打包压 ...
- 实现div里的内容垂直居中
---恢复内容开始--- 在项目中我们会遇到这种情况,一个div的宽固定,里面的内容长度不定,不管是一行还是多行,都要垂直居中,有俩个实现方法: 1.使用absolute,top:50%,transf ...
- Keepalived详解之 - LVS(IPVS)管理工具ipvsadm使用指南
ipvsadm是什么? ipvsadm是用来配置.维护或者查看Linux内核当中virtual server table的一个工具, LVS(Linux virtual server)能基于一个集群当 ...
- php三种常用的加密解密算法
方法一: /** * @param $string 要加密/解密的字符串 * @param string $operation 类型,ENCODE 加密:DECODE 解密 * @param stri ...
- selenium+python谷歌驱动配置
1.打开chrome 输入 “chrome://version/”来查看chrome版本 2.访问此网站 http://chromedriver.storage.googleapis.com/ind ...
- 20155309南皓芯 网络对抗《网络攻防》 Exp1 PC平台逆向破解(5)M
实践目标 本次实践的对象是linux的可执行文件 该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. 该程序同时包含另一个代码片段,getShell,会返回一个可 ...
- 《剑指offer》-中序遍历下一个节点
题目描述 给定一个二叉树和其中的一个结点,请找出中序遍历顺序的下一个结点并且返回.注意,树中的结点不仅包含左右子结点,同时包含指向父结点的指针. /* struct TreeLinkNode { in ...