题目链接





map:

//杜教筛
#include<map>
#include<cstdio>
typedef long long LL;
const int N=5e6; int mu[N+3],P[N+3],cnt;
bool Not_P[N+3];
std::map<LL,LL> sum;
//std::map<LL,LL>::iterator it; void Init()
{
mu[1]=1;
for(int i=2;i<N;++i)
{
if(!Not_P[i]) P[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*P[j]<N;++j)
{
Not_P[i*P[j]]=1;
if(!(i%P[j])) {mu[i*P[j]]=0; break;}
mu[i*P[j]]=-mu[i];
}
}
for(int i=2;i<N;++i) mu[i]+=mu[i-1];
}
LL Calc(LL n)
{
if(n<N) return mu[n];
// if((it=sum.find(n))!=sum.end()) return it->second;//效率是几乎一样的
if(sum.count(n)) return sum[n];
LL ans=1;
for(LL nxt,i=2;i<=n;i=nxt+1)
nxt=n/(n/i),ans-=(nxt-i+1)*Calc(n/i);
return sum[n]=ans;
} int main()
{
Init();
LL a,b;scanf("%lld%lld",&a,&b);
printf("%lld",Calc(b)-Calc(a-1)); return 0;
}

数组:(使用数组这个trick存的话 对于多组询问就要重新计算了)

但是据(rqy)说map实际用到的次数并不多,所以多次询问还是直接用map吧。

//比map还要慢一点

#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
typedef long long LL;
const int N=5e6; int mu[N+3],P[N+3],cnt;
LL sum2[15000],Max;
bool Not_P[N+3]; void Init()
{
mu[1]=1;
for(int i=2;i<Max;++i)
{
if(!Not_P[i]) P[++cnt]=i,mu[i]=-1;
for(int j=1;j<=cnt&&i*P[j]<Max;++j)
{
Not_P[i*P[j]]=1;
if(!(i%P[j])) {mu[i*P[j]]=0; break;}
mu[i*P[j]]=-mu[i];
}
}
for(int i=1;i<Max;++i) mu[i]+=mu[i-1];
}
const int EQU=-2333333;
LL Calc(LL n,LL mx)
{
if(n<Max) return mu[n];
if(sum2[mx/n]!=EQU) return sum2[mx/n];
LL ans=1;
for(LL nxt,i=2;i<=n;i=nxt+1)
nxt=n/(n/i),ans-=(nxt-i+1)*Calc(n/i,mx);
return sum2[mx/n]=ans;
} int main()
{
LL a,b;scanf("%lld%lld",&a,&b);
// printf("%.3lf %.3lf\n",pow(a,0.667),pow(b,0.667));
Max=pow(b,0.667), Init();
std::fill(sum2,sum2+15000,EQU); LL ans1=Calc(b,b);
std::fill(sum2,sum2+15000,EQU); LL ans2=Calc(a-1,a-1);
printf("%lld",ans1-ans2); return 0;
}

51Nod.1244.莫比乌斯函数之和(杜教筛)的更多相关文章

  1. 51 NOD 1244 莫比乌斯函数之和(杜教筛)

    1244 莫比乌斯函数之和 基准时间限制:3 秒 空间限制:131072 KB 分值: 320 难度:7级算法题 收藏 关注 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens) ...

  2. 【51nod-1239&1244】欧拉函数之和&莫比乌斯函数之和 杜教筛

    题目链接: 1239:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1239 1244:http://www.51nod. ...

  3. 51nod1244 莫比乌斯函数之和 杜教筛

    虽然都写了,过也过了,还是觉得杜教筛的复杂度好玄学 设f*g=h,∑f=S, 则∑h=∑f(i)S(n/i下取整) 把i=1时单独拿出来,得到 S(n)=(∑h-∑2->n f(i)S(n/i下 ...

  4. 51nod 1244 莫比乌斯函数之和 【杜教筛】

    51nod 1244 莫比乌斯函数之和 莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出.梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号.具体定义如下: 如果一个数包含 ...

  5. [51Nod 1244] - 莫比乌斯函数之和 & [51Nod 1239] - 欧拉函数之和 (杜教筛板题)

    [51Nod 1244] - 莫比乌斯函数之和 求∑i=1Nμ(i)\sum_{i=1}^Nμ(i)∑i=1N​μ(i) 开推 ∑d∣nμ(d)=[n==1]\sum_{d|n}\mu(d)=[n== ...

  6. 51nod 1244 莫比乌斯函数之和

    题目链接:51nod 1244 莫比乌斯函数之和 题解参考syh学长的博客:http://www.cnblogs.com/AOQNRMGYXLMV/p/4932537.html %%% 关于这一类求积 ...

  7. 51nod 1244 莫比乌斯函数之和(杜教筛)

    [题目链接] http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 [题目大意] 计算莫比乌斯函数的区段和 [题解] 利 ...

  8. [51Nod 1237] 最大公约数之和 (杜教筛+莫比乌斯反演)

    题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i ...

  9. 【51nod】1239 欧拉函数之和 杜教筛

    [题意]给定n,求Σφ(i),n<=10^10. [算法]杜教筛 [题解] 定义$s(n)=\sum_{i=1}^{n}\varphi(i)$ 杜教筛$\sum_{i=1}^{n}(\varph ...

随机推荐

  1. JavaScript内置对象——Math对象

    这几天在刷leetcode的时候用到了一些Math对象的知识,故作一下总结~ JavaScript中的Math对象也是一个常见的内置对象,然而与String等其它常见对象不同,Math对象没有构造函数 ...

  2. linux 查看用户上次修改密码的日期【转】

    1.找到以下文件: cat /etc/shadow 第三段字符就是最近一次密码修改的天数,此数字是距离1970年1月1日的天数.   2.用以下命令计算: date -u -d "1970- ...

  3. mac安装mysql8.0的错误

    在MySQL 8.0中,caching_sha2_password是默认的身份验证插件,而不是mysql_native_password.有关此更改对服务器操作的影响以及服务器与客户端和连接器的兼容性 ...

  4. dubbo系列五、dubbo核心配置

    一.配置文件 1.生产者配置provider.xml <?xml version="1.0" encoding="UTF-8"?> <bean ...

  5. Salt Document学习笔记2

    配置文件需修改的内容及注意点: Edit the master config file: 1. Uncomment and change the user: root value to your ow ...

  6. Salt Document学习笔记1

    原文来自Salt Documentation,作者是 Thomas Hatch),我摘抄部分可能今后会用到或适合入门到精通的一些原文段落,简单翻译后发上来,便于查阅和研究 一.原理方面:The net ...

  7. js使用中的小问题----textarea是否有value属性

    使用jquery的选择器时想给textarea设置一个默认值时,采取了下面的方法: 不过失败了,但是看教程上确实成功的,那么肯定是有问题的. 经过上网查找以及自己验证发现: 1.textarea标签确 ...

  8. 内核中 subsys_initcall 以及初始化标号

    今天在看内核中无线的实现时,发现一个调用 subsys_initcall(cfg80211_init);搜索一些资料: subsys_initcall 的定义在 include/linux/init. ...

  9. zookeeper3.4.6配置实现自动清理日志

    在使用zookeeper过程中,我们知道,会有dataDir和dataLogDir两个目录,分别用于snapshot和事务日志的输出(默认情况下只有dataDir目录,snapshot和事务日志都保存 ...

  10. how to detect circles and rectangle?

    opencv中对圆检测的函数为:HoughCircles(src_gray,circles,CV_HOUGHT_GRADIENT,1,src_gray.cols/8,200,100,0,0) circ ...