题目链接

\(Description\)

有n个数,将其分为k段,每段的值为这一段的总共数字种类,问最大总值是多少

\(Solution\)

DP,用\(f[i][j]\)表示当前在i 分成了j份(第j份包括i)

那枚举前边的断点k,即

\(f[i][j]=max{f[k][j-1]+val(k+1,1)}\)

\(val(a,b)\)表示\([a,b]\)这段区间的价值(数字种数)

\(O(n^2*k)\)

第二维可以滚动数组优化掉,只在最外层枚举即可

优化求\(val()\)的过程

val是与数的种类数有关,所以对于a[i],在计算\([1,las[a[i]]]\)的val[]时,a[i]不会做出贡献;

而用\([las[a[i]]+1,i]\)计算val时,a[i]会有1的贡献

即用\(f[k](k∈[1,\ las[a[i]]-1])\)时,不会有a[i]的贡献;

而用\(f[k](k∈[las[a[i]],\ i-1])\)更新时,a[i]会对其产生贡献(k这个点是不在后一个区间里的)

在这段区间+1,然后查询最优值,更新f[i]

区间加、区间查询最优值 -> 线段树

/*
592ms 8400KB
注意1.可以从f[0]更新
2.查询位置与第一层循环的关系
3.开四倍空间... 基本线段树都不会写了...
*/
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
//#define gc() getchar()
#define gc() (SS==IN &&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=35005,MAXIN=5e6; int n,k,A[N],f[N],las[N],tmp[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
struct Seg_Tree
{
int maxv[N<<2],tag[N<<2];
inline void PushUp(int rt)
{
maxv[rt]=std::max(maxv[rt<<1],maxv[rt<<1|1]);
}
inline void PushDown(int rt)
{
maxv[rt<<1]+=tag[rt], maxv[rt<<1|1]+=tag[rt];
tag[rt<<1]+=tag[rt], tag[rt<<1|1]+=tag[rt];
tag[rt]=0;
}
void Build(int l,int r,int rt)
{
tag[rt]=0;
if(l==r) {maxv[rt]=f[l]; return;}
int m=l+r>>1;
Build(l,m,rt<<1), Build(m+1,r,rt<<1|1);
PushUp(rt);
}
void Modify(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R)
{
++maxv[rt], ++tag[rt];
return;
}
if(tag[rt]) PushDown(rt);
int m=l+r>>1;
if(L<=m) Modify(l,m,rt<<1,L,R);
if(m<R) Modify(m+1,r,rt<<1|1,L,R);
PushUp(rt);
}
int Query(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R) return maxv[rt];
if(tag[rt]) PushDown(rt);
int m=l+r>>1;
if(L<=m)
if(m<R) return std::max(Query(l,m,rt<<1,L,R),Query(m+1,r,rt<<1|1,L,R));
else return Query(l,m,rt<<1,L,R);
else return Query(m+1,r,rt<<1|1,L,R);
}
}t; int main()
{
#ifndef ONLINE_JUDGE
freopen("D.in","r",stdin);
#endif n=read(),k=read();
for(int i=1;i<=n;++i)
A[i]=read(), las[i]=tmp[A[i]], tmp[A[i]]=i;
// for(int i=1;i<=n;++i) printf("%d %d\n",A[i],las[i]);
for(int i=1;i<=k;++i)
{
t.Build(0,n,1);
for(int j=i;j<=n;++j)
t.Modify(0,n,1,las[j],j-1),f[j]=t.Query(0,n,1,i-1,j-1);
}
printf("%d",f[n]); return 0;
}

堆式存储:(多维护了ls,rs而只少了两倍空间,所以空间优化不大)(写这个纯粹闲的)

/*
624ms 9400KB 和另一个差不了多少 注意1.可以从f[0]更新
2.查询位置与第一层循环的关系
*/
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
//#define gc() getchar()
#define gc() (SS==IN &&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define lson node[rt].ls
#define rson node[rt].rs
const int N=35005,MAXIN=5e6; int n,k,A[N],f[N],las[N],tmp[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
struct Seg_Tree
{
int tot;
struct Node
{
int ls,rs,maxv,tag;
}node[N<<1];
inline void PushUp(int rt)
{
node[rt].maxv=std::max(node[lson].maxv,node[rson].maxv);
}
inline void PushDown(int rt)
{
node[lson].maxv+=node[rt].tag, node[rson].maxv+=node[rt].tag;
node[lson].tag+=node[rt].tag, node[rson].tag+=node[rt].tag;
node[rt].tag=0;
}
void Build(int l,int r)
{
int p=tot++;
node[p].tag=0;
if(l==r) { node[p].ls=node[p].rs=-1,node[p].maxv=f[l]; return;}
int m=l+r>>1;
node[p].ls=tot, Build(l,m);
node[p].rs=tot, Build(m+1,r);
PushUp(p);
}
void Modify(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R)
{
++node[rt].maxv, ++node[rt].tag;
return;
}
if(node[rt].tag) PushDown(rt);
int m=l+r>>1;
if(L<=m) Modify(l,m,lson,L,R);
if(m<R) Modify(m+1,r,rson,L,R);
PushUp(rt);
}
int Query(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R) return node[rt].maxv;
if(node[rt].tag) PushDown(rt);
int m=l+r>>1;
if(L<=m)
if(m<R) return std::max(Query(l,m,lson,L,R),Query(m+1,r,rson,L,R));
else return Query(l,m,lson,L,R);
else return Query(m+1,r,rson,L,R);
}
}t; int main()
{
#ifndef ONLINE_JUDGE
freopen("D.in","r",stdin);
#endif n=read(),k=read();
for(int i=1;i<=n;++i)
A[i]=read(), las[i]=tmp[A[i]], tmp[A[i]]=i;
// for(int i=1;i<=n;++i) printf("%d %d\n",A[i],las[i]);
for(int i=1;i<=k;++i)
{
t.tot=0, t.Build(0,n);
for(int j=i;j<=n;++j)
t.Modify(0,n,0,las[j],j-1),f[j]=t.Query(0,n,0,i-1,j-1);
}
printf("%d",f[n]); return 0;
}

Codeforces.833B.The Bakery(线段树 DP)的更多相关文章

  1. CodeForces 834D The Bakery(线段树优化DP)

    Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...

  2. codeforces#426(div1) B - The Bakery (线段树 + dp)

    B. The Bakery   Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...

  3. Codeforces.264E.Roadside Trees(线段树 DP LIS)

    题目链接 \(Description\) \(Solution\) 还是看代码好理解吧. 为了方便,我们将x坐标左右反转,再将所有高度取反,这样依然是维护从左到右的LIS,但是每次是在右边删除元素. ...

  4. CF833B The Bakery (线段树+DP)

    题目大意:给你一个序列(n<=35000),最多分不大于m块(m<=50),求每个块内不同元素的数量之和的最大值 考试的时候第一眼建图,没建出来,第二眼贪心 ,被自己hack掉了,又随手写 ...

  5. [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)

    [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...

  6. Tsinsen A1219. 采矿(陈许旻) (树链剖分,线段树 + DP)

    [题目链接] http://www.tsinsen.com/A1219 [题意] 给定一棵树,a[u][i]代表u结点分配i人的收益,可以随时改变a[u],查询(u,v)代表在u子树的所有节点,在u- ...

  7. HDU 3016 Man Down (线段树+dp)

    HDU 3016 Man Down (线段树+dp) Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Ja ...

  8. Buses and People CodeForces 160E 三维偏序+线段树

    Buses and People CodeForces 160E 三维偏序+线段树 题意 给定 N 个三元组 (a,b,c),现有 M 个询问,每个询问给定一个三元组 (a',b',c'),求满足 a ...

  9. CodeForces 877E DFS序+线段树

    CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...

随机推荐

  1. 分布式系列 - dubbo服务telnet命令【转】

    dubbo服务发布之后,我们可以利用telnet命令进行调试.管理.Dubbo2.0.5以上版本服务提供端口支持telnet命令,下面我以通过实例抛砖引玉一下: 1.连接服务 测试对应IP和端口下的d ...

  2. .net active up mail 邮件发送

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  3. nginx简单介绍

    代理服务器:一般是指局域网内部的机器通过代理服务器发送请求到互联网上的服务器,代理服务器一般作用在客户端.应用比如:GoAgent,FQ神器. 一个完整的代理请求过程为: 客户端首先与代理服务器创建连 ...

  4. 一步步实现windows版ijkplayer系列文章之二——Ijkplayer播放器源码分析之音视频输出——视频篇

    一步步实现windows版ijkplayer系列文章之一--Windows10平台编译ffmpeg 4.0.2,生成ffplay 一步步实现windows版ijkplayer系列文章之二--Ijkpl ...

  5. zabbix3.0.4关于java服务端程序内存溢出的处理

    关于java服务端程序内存溢出的处理 java服务端程序内存溢出会产生jvm.log文件,此时程序会挂掉,无法正常处理业务,需要重启服务 思路: 当存在jvm.log这个文件的时候则触发clean_j ...

  6. zabbix系列(四)Zabbix3.0.4添加对Nginx服务的监控

    Zabbix3.0.4添加对Nginx服务的监控 通过Nginx的http_stub_status_module模块提供的状态信息来监控,所以在Agent端需要配置Nginx状态获取的脚本,和添加ke ...

  7. centos6.7环境下kvm虚拟机之virt-install和virsh及virt-manager工具的使用

    virt-install工具的使用: virt-install是一个命令行工具,它能够为KVM.Xen或其它支持libvrit API的hypervisor创建虚拟机并完成GuestOS安装:此外,它 ...

  8. Servlet注释与部署描述符

    值得注意的是,部署描述符优先于注释.换句话说,部署描述符覆盖通过注释机制所规定的配置信息.Web 部署描述符的 3.0 版本在 web-app 元素上包含一种名为 metadata-complete ...

  9. Java用四种方法实现阶乘n! (factorial)

    1. 引言 实现阶乘的方法很多,这边介绍四种方法,分别是递归,尾递归,循环和BigDecimal. 2. 代码 public class Test { public static void main( ...

  10. DNS详解: A记录,子域名,CNAME别名,PTR,MX,TXT,SRV,TTL

    DNS DNS,Domain Name System或者Domain Name Service(域名系统或者域名服务).域名系统为Internet上的主机分配域名地址和IP地址.由于网络中的计算机都必 ...