Description
给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案

题解:

  • dp[i]表示组合成包含i个贝壳的项链的总方案数
  • 转移:dp[i]=Σdp[i-j]*a[j](1<=j<=i)
  • #include <bits/stdc++.h>
    using namespace std;
    #define dob complex<double>
    #define rint register int
    #define mo 313
    #define IL inline
    const double pi=acos(-1.0);
    const int N=2e5;
    dob a[N],b[N],bb[N];
    int n,m,r[N],l,dp[N],sum[N];
    IL void fft(dob *a,int o)
    {
    for (rint i=;i<n;i++)
    if (i>r[i]) swap(a[i],a[r[i]]);
    for (rint i=;i<n;i*=)
    {
    dob wn(cos(pi/i),sin(pi*o/i)),x,y;
    for (rint j=;j<n;j+=(i*))
    {
    dob w(,);
    for (rint k=;k<i;k++,w*=wn)
    {
    x=a[j+k],y=w*a[i+j+k];
    a[j+k]=x+y,a[i+j+k]=x-y;
    }
    }
    }
    }
    IL void query()
    {
    l=;
    for (n=;n<=m;n<<=) l++;
    for (rint i=;i<n;i++) r[i]=(r[i/]/)|((i&)<<(l-));
    fft(a,); fft(b,);
    for (rint i=;i<n;i++) a[i]*=b[i];
    fft(a,-);
    for (rint i=;i<=m;i++)
    sum[i]=a[i].real()/n+0.5,sum[i]%=mo;
    }
    #define mid (l+r)/2
    void cdq(int l,int r)
    {
    if (l==r) return;
    cdq(l,mid);
    for (rint i=l;i<=mid;i++) a[i-l]=dp[i];
    m=r-l;
    rint x;
    for (x=;x<=m;x<<=);
    for (rint i=mid+;i<=l+x;i++) a[i-l]=;
    b[]=;
    for (rint i=;i<=x;i++) b[i]=bb[i];
    query();
    for (rint i=mid-l+;i<=r-l;i++)
    {
    dp[i+l]+=sum[i];
    dp[i+l]%=mo;
    }
    cdq(mid+,r);
    }
    int main()
    {
    freopen("noi.in","r",stdin);
    freopen("noi.out","w",stdout);
    std::ios::sync_with_stdio(false);
    int k;
    while (cin>>k&&k)
    {
    for (rint i=;i<=k;i++) cin>>bb[i];
    memset(dp,,sizeof(dp));
    dp[]=;
    cdq(,k);
    cout<<dp[k]%mo<<endl;
    }
    return ;
    }

该改一个fft模板了,实在是慢https://www.luogu.org/record/show?rid=3767323

#8 //HDU 5730 Shell Necklace(CDQ分治+FFT)的更多相关文章

  1. HDU 5730 Shell Necklace cdq分治+FFT

    题意:一段长为 i 的项链有 a[i] 种装饰方式,问长度为n的相连共有多少种装饰方式 分析:采用dp做法,dp[i]=∑dp[j]*a[i-j]+a[i],(1<=j<=i-1) 然后对 ...

  2. HDU Shell Necklace CDQ分治+FFT

    Shell Necklace Problem Description Perhaps the sea‘s definition of a shell is the pearl. However, in ...

  3. hdu 5730 Shell Necklace [分治fft | 多项式求逆]

    hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...

  4. HDU 5730 Shell Necklace(CDQ分治+FFT)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5730 [题目大意] 给出一个数组w,表示不同长度的字段的权值,比如w[3]=5表示如果字段长度为3 ...

  5. hdu 5730 Shell Necklace fft+cdq分治

    题目链接 dp[n] = sigma(a[i]*dp[n-i]), 给出a1.....an, 求dp[n]. n为1e5. 这个式子的形式显然是一个卷积, 所以可以用fft来优化一下, 但是这样也是会 ...

  6. HDU.5730.Shell Necklace(分治FFT)

    题目链接 \(Description\) 有\(n\)个长度分别为\(1,2,\ldots,n\)的珠子串,每个有\(a_i\)种,每种个数不限.求有多少种方法组成长度为\(n\)的串.答案对\(31 ...

  7. hdu 5730 Shell Necklace——多项式求逆+拆系数FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 可以用分治FFT.但自己只写了多项式求逆. 和COGS2259几乎很像.设A(x),指数是长度,系数 ...

  8. hdu5730 Shell Necklace 【分治fft】

    题目 简述: 有一段长度为n的贝壳,将其划分为若干段,给出划分为每种长度的方案数,问有多少种划分方案 题解 设\(f[i]\)表示长度为\(i\)时的方案数 不难得dp方程: \[f[i] = \su ...

  9. hdu 5730 Shell Necklace —— 分治FFT

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5730 DP式:\( f[i] = \sum\limits_{j=1}^{i} f[i-j] * a[j] ...

随机推荐

  1. CodeForces - 896A Nephren gives a riddle

    A. Nephren gives a riddle time limit per test 2 seconds memory limit per test 256 megabytes input st ...

  2. 二、主目录 Makefile 分析(2)

    2.7 编译选项---config.mk 代码 163 164 行 # load other configuration include $(TOPDIR)/config.mk 此段就是包含顶层目录下 ...

  3. Winfrom多文档界面实现

    Winfrom多文档界面实现 闲来无事,研究了下比较常用的多文档界面风格,网上找了好多例子,最终实现.记录一下 废话不多说,先上个效果: 默认打开我的桌面,首页不允许关闭,xtraTabPage动态添 ...

  4. js计算数字长度

    js调用toString方法转为字符串后取长度 var num = 123; alert(num.toString().length);

  5. jdk学习之如何调试jdk

    自从sun被oracle收购后,在oracle下载的jdk使用F5进入调试jdk的方法就不行了,这对于想看jdk的源码的小伙伴是一个暴击(oracle在编译rt.jar时去除了调试信息): 这不得不鼻 ...

  6. 在css中控制图像的大小

    可在CSS中利用width属性和height属性控制一个图像得到大小,就像控制其他任何盒子的大小一样. <html> <head> <title>TODO supp ...

  7. JQuery中的$.getScript()、$.getJson()和$.ajax()方法

    $.getScript() 有时候,在页面初次加载时就取得所需的全部JavaScript文件是完全没有必要的.虽然可以在需要哪个JavaScript文件时,动态地创建<script>标签, ...

  8. 使用密钥认证机制远程登录Linux

    密钥认证机制 创建存放key的文件 1)创建目录 /root/.ssh 并设置权限 [root@localhost ~]# mkdir /root/.ssh mkdir 命令用来创建目录,以后会详细介 ...

  9. 【PE结构】PIMAGE_FILE_HEADER中TimeDateStamp的时间戳与标准时间转换

    计算PE文件创建时间,需要对时间进行转换,也就是将时间戳转换成特定的格式,或者特定的格式转换成时间戳. pImageFileHeader->TimeDateStamp的值为1487665851 ...

  10. unbuntu 16.04.2 安装 Eclipse C++开发环境

    1.安装JAVA (1)首先添加源: sudo gedit /etc/apt/sources.list 在打开的文件中添加如下内容并保存: deb http://ppa.launchpad.net/w ...