021 RDD的依赖关系,以及造成的stage的划分
一:RDD的依赖关系
1.在代码中观察
val data = Array(1, 2, 3, 4, 5)
val distData = sc.parallelize(data)
val resultRDD = distData.flatMap(v => (1 to v)).map(v => (v%2,1)).reduceByKey(_+_)
resultRDD.toDebugString ## 查看RDD的依赖情况
2.解释
+—处表示,这是两个不同的stage
同时可以知道shuffledRDD依赖于MapPartitionRDD,MapPartitionRDD依赖于MapPartitionRDD,MapPartitionRDD依赖于ParalleCollectionRDD
[2]表示有两个分区
3.RDD依赖
lineage: 生命线
依赖于RDD之间的依赖,后续的RDD数据是从之前的RDD中获取
由于存在RDD的依赖,当一个后续的RDD执行失败的情况下(某个Task执行失败,eg:数据丢失),可以从父RDD中重新执行
RDD依赖父RDD,依赖的父RDD可以有多个;
特例:第一个RDD是没有父RDD的
RDD的内部是由多个Partiiton构成的,所以RDD的依赖实质上就是RDD中Partition的依赖关系
4.依赖的情况
当前RDD中的每个分区的数据到下一个RDD都对应一个分区
即:一个分区的数据输出到下一个RDD的时候还是在同一个分区,也就是一对一
当前RDD中的多个分区的数据到下一个RDD的时候输出到同一个分区,当前RDD的中一个分区的数据到下一个RDD的时候输出到多个分区,也就是多对多
5.依赖分类
窄依赖:
子RDD中的每个分区的数据都来自于常数个父RDD的分区,而且父RDD每个分区的数据到子RDD的时候一定在一个分区中
不存在shuffle过程,所有操作在一起进行
宽依赖:
子RDD中的每个分区的数据都依赖所有父RDD的所有的分区数据,而且父RDD的每个分区的数据到子RDD的时候不一定在一个分区中
存在shuffle过程,需要等待上一个RDD的所有Task执行完成
注意点:
join有时候是宽依赖,有时候是窄依赖,这个要看分区数量会不会改变。
6.算子与依赖之间的关系
原本以为Transformation的算子是窄依赖,Action算子是宽依赖。
现在理解更深了一下,发现他们是两个概念,不要混淆。
二:stage的划分
1.Spark Application Job的Stage划分规则
RDD在调用transformation类型的函数时候形成DAG执行图(RDD的依赖)
RDD在调用action类型函数的时候会触发job的执行
在Driver中使用DAGScheduler对DAG图进行Stage的划分
从DAG图的最后一步(结果输出的那一步)往前推,如果发现API是宽依赖(ShuffledRDD), 就结束推断,将此时构成的DAG图称为一个Stage,然后继续往前推断,直到第一个RDD
====> Stage与Stage之间的分割是宽依赖
三:两种RDD依赖的复习
1.说明
主要是添加一个知识点。
什么情况下父RDD需要执行。
2.不是不执行
021 RDD的依赖关系,以及造成的stage的划分的更多相关文章
- Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)
RDD的依赖关系? RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...
- RDD的依赖关系
RDD的依赖关系 Rdd之间的依赖关系通过rdd中的getDependencies来进行表示, 在提交job后,会通过在DAGShuduler.submitStage-->getMissingP ...
- sparkRDD:第4节 RDD的依赖关系;第5节 RDD的缓存机制;第6节 DAG的生成
4. RDD的依赖关系 6.1 RDD的依赖 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency ...
- 【Spark】RDD的依赖关系和缓存相关知识点
文章目录 RDD的依赖关系 宽依赖 窄依赖 血统 RDD缓存 概述 缓存方式 RDD的依赖关系 RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency) 和宽依赖 ...
- 大数据学习day23-----spark06--------1. Spark执行流程(知识补充:RDD的依赖关系)2. Repartition和coalesce算子的区别 3.触发多次actions时,速度不一样 4. RDD的深入理解(错误例子,RDD数据是如何获取的)5 购物的相关计算
1. Spark执行流程 知识补充:RDD的依赖关系 RDD的依赖关系分为两类:窄依赖(Narrow Dependency)和宽依赖(Shuffle Dependency) (1)窄依赖 窄依赖指的是 ...
- Spark RDD概念学习系列之rdd的依赖关系彻底解密(十九)
本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Tra ...
- Spark之RDD依赖关系及DAG逻辑视图
RDD依赖关系为成两种:窄依赖(Narrow Dependency).宽依赖(Shuffle Dependency).窄依赖表示每个父RDD中的Partition最多被子RDD的一个Partition ...
- Spark-Core RDD依赖关系
scala> var rdd1 = sc.textFile("./words.txt") rdd1: org.apache.spark.rdd.RDD[String] = . ...
- Spark RDD详解 | RDD特性、lineage、缓存、checkpoint、依赖关系
RDD(Resilient Distributed Datasets)弹性的分布式数据集,又称Spark core,它代表一个只读的.不可变.可分区,里面的元素可分布式并行计算的数据集. RDD是一个 ...
随机推荐
- elasticsearch 基本配置
基本配置elasticsearch的config文件夹里面有两个配置文件:elasticsearch.yml .logging.yml.jvm.options 第一个是es的基本配置文件,第二个是日志 ...
- luogu P1593 因子和
不要吐槽博主总做这些数论氵题 首先我们看到这种因数问题,果断质因数分解 所以当前数\(a=p_1^{k_1}*p_2^{k_2}...*p_m^{k_m}\) 可得\(a^b=p_1^{k_1*b}* ...
- $Miller Rabin$总结
\(Miller Rabin\)总结: 这是一个很高效的判断质数的方法,可以在用\(O(logn)\) 的复杂度快速判断一个数是否是质数.它运用了费马小定理和二次探测定理这两个筛质数效率极高的方法. ...
- layer弹出层的iframe页面回调
$("#ChoiceBank").click(function () { var width = $("#content").css("Width&q ...
- C++ explicit 关键字
原文转自:http://www.cnblogs.com/ymy124/p/3632634.html 首先, C++中的explicit关键字只能用于修饰只有一个参数的类构造函数, 它的作用是表明该构造 ...
- Linux压缩和解压缩类指令
⒈gzip ①gzip 文件 压缩文件,只能将文件压缩为*.gz文件 ②gunzip 文件.gz 用于解压文件 ⒉zip ①zip [选项] xxx.zip 需要压缩的内容 压缩文件和目录 常用选项: ...
- DockerFile解析
⒈是什么? DockerFile是用来构建Docker镜像的构建文件,是由一系列命令和参数构成的脚本文件. ⒉步骤 ①手动编写一个符合规范的DockerFile文件(编写) ②使用docker bui ...
- 异步编程之使用yield from
异步编程之使用yield from yield from 是 Python3.3 后新加的语言结构.yield from的主要功能是打开双向通道,把最外层的调用方法与最内层的子生成器连接起来.这两者就 ...
- HTML学习笔记04-样式
HTML<style>属性 style属性的作用: 提供了一种改变所有HTML元素样式的通用方法 background-colco属性为元素定义了背景颜色: <!DOCTYPE HT ...
- eclipse 反编译
Eclipse Class Decompiler安装此插件,可以编译源代码且调试