【CF582E】Boolean Function

题意:给你一个长度为n的表达式,其中未知数有A,B,C,D和?,运算有&和|和?(表达式中用括号确定了唯一的运算顺序)。?代表A,B,C,D或&,|。A,B,C,D的值是0或1。再给你m个条件$a,b,c,d,e$,代表A,B,C,D分别等于a,b,c,d时表达式的值为e。求有多少种将?填满的方式,符合给出的所有条件?

$n\le 500,m\le 2^4$

题解:CF总考这种用二进制表示特殊状态的题,感觉十分考验人类的抽象能力。

因为变量的可能情况的只有$2^4$种,所以我们用一个4位的二进制字符表示。这样一来我们就可以发现可能的表达式只有$2^{2^4}$种,所以我们再用一个16位的二进制来表示一个表达式(不要晕)。这个二进制数的第i位为0/1的意义是:如果把i用二进制表示,则i的每一位代表每个变量的取值。在这些变量分别取这些值时,这个表达式的值为0/1(千万不要晕)。

因为表达式是一堆括号围出来的,我们可以将括号的嵌套看成一个树形结构,并且是一棵二叉树。我们设f[x][S]表示对于当前节点对应的子树,有多少种方法使得得到的表达式为S。转移时我们通过左右儿子的f以及当前节点的运算符即能确定当前节点的f值。然后你会发现转移的实质就是FWT。。。

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long ll;
const int P=1000000007;
char str[510];
int n,m,tot;
int f[170][(1<<16)+4],g[(1<<16)+4],p1[20],p2[20];
inline void add(int &x,int y) {x+=y; if(x>=P) x-=P;}
inline void dec(int &x,int y) {x-=y; if(x<=0) x+=P;}
inline void fwt1(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if((i>>h)&1) add(a[i],a[i^(1<<h)]);
}
inline void ufwt1(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if((i>>h)&1) dec(a[i],a[i^(1<<h)]);
}
inline void fwt0(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if(!((i>>h)&1)) add(a[i],a[i|(1<<h)]);
}
inline void ufwt0(int *a)
{
for(int h=0;h<16;h++) for(int i=0;i<(1<<16);i++) if(!((i>>h)&1)) dec(a[i],a[i|(1<<h)]);
}
int build(int l,int r)
{
int x=++tot;
if(l==r)
{
int i,j,S;
for(j=0;j<4;j++)
{
if(str[l]=='?'||str[l]=='A'+j)
{
for(S=i=0;i<16;i++) if((i>>j)&1) S|=1<<i;
f[x][S]++;
}
if(str[l]=='?'||str[l]=='a'+j)
{
for(S=i=0;i<16;i++) if(!((i>>j)&1)) S|=1<<i;
f[x][S]++;
}
}
return x;
}
int i,mid,t=0;
for(i=l;i<=r;i++)
{
t+=(str[i]=='(')-(str[i]==')');
if(!t) break;
}
mid=i+1;
int ls=build(l+1,mid-2),rs=build(mid+2,r-1);
if(str[mid]=='|')
{
fwt1(f[ls]),fwt1(f[rs]);
for(i=0;i<(1<<16);i++) f[x][i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt1(f[x]);
}
else if(str[mid]=='&')
{
fwt0(f[ls]),fwt0(f[rs]);
for(i=0;i<(1<<16);i++) f[x][i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt0(f[x]);
}
else
{
fwt0(f[ls]),fwt0(f[rs]);
for(i=0;i<(1<<16);i++) g[i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt0(g),ufwt0(f[ls]),ufwt0(f[rs]);
memcpy(f[x],g,sizeof(g));
fwt1(f[ls]),fwt1(f[rs]);
for(i=0;i<(1<<16);i++) g[i]=1ll*f[ls][i]*f[rs][i]%P;
ufwt1(g);
for(i=0;i<(1<<16);i++) add(f[x][i],g[i]);
}
return x;
}
int main()
{
scanf("%s%d",str+1,&m),n=strlen(str+1);
int i,j,ans=0,S=0,t;
for(i=1;i<=m;i++)
{
for(S=j=0;j<4;j++) scanf("%d",&t),S|=t<<j;
scanf("%d",&t),p1[i]=S,p2[i]=t;
}
build(1,n);
for(i=0;i<(1<<16);i++)
{
for(j=1;j<=m;j++) if(((i>>p1[j])&1)!=p2[j]) break;
if(j>m) add(ans,f[1][i]);
}
printf("%d",ans);
return 0;
}

【CF582E】Boolean Function 树形DP+FWT的更多相关文章

  1. CF582E Boolean Function(DP,状态压缩,FMT)

    简单题. 我第二道自己做出来的 2900 没毛病,我没切过 2800 的题 lqy:"CF 评分 2800 是中等难度" 我活个啥劲啊 为了方便(同时压缩状态个数),先建出表达式树 ...

  2. HDU5909 Tree Cutting(树形DP + FWT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5909 Description Byteasar has a tree T with n ve ...

  3. hdu 5909 Tree Cutting [树形DP fwt]

    hdu 5909 Tree Cutting 题意:一颗无根树,每个点有权值,连通子树的权值为异或和,求异或和为[0,m)的方案数 \(f[i][j]\)表示子树i中经过i的连通子树异或和为j的方案数 ...

  4. HDU - 5909 Tree Cutting (树形dp+FWT优化)

    题意:树上每个节点有权值,定义一棵树的权值为所有节点权值异或的值.求一棵树中,连通子树值为[0,m)的个数. 分析: 设\(dp[i][j]\)为根为i,值为j的子树的个数. 则\(dp[i][j\o ...

  5. HDU.5909.Tree Cutting(树形DP FWT/点分治)

    题目链接 \(Description\) 给定一棵树,每个点有权值,在\([0,m-1]\)之间.求异或和为\(0,1,...,m-1\)的非空连通块各有多少个. \(n\leq 1000,m\leq ...

  6. hdu5909 Tree Cutting 【树形dp + FWT】

    题目链接 hdu5909 题解 设\(f[i][j]\)表示以\(i\)为根的子树,\(i\)一定取,剩余节点必须联通,异或和为\(j\)的方案数 初始化\(f[i][val[i]] = 1\) 枚举 ...

  7. [cf582E]Boolean Function

    由于每一个运算都有括号,因此添加的运算不会改变运算顺序 先将其建出一棵表达式树,也就是维护两个栈,是节点和运算符优先级单调递增的栈(设置左括号优先级最低,右括号弹出直至左括号) 每一次运算,也就是新建 ...

  8. HDU 5977 Garden of Eden (树形dp+快速沃尔什变换FWT)

    CGZ大佬提醒我,我要是再不更博客可就连一月一更的频率也没有了... emmm,正好做了一道有点意思的题,就拿出来充数吧=.= 题意 一棵树,有 $ n (n\leq50000) $ 个节点,每个点都 ...

  9. fwt优化+树形DP HDU 5909

    //fwt优化+树形DP HDU 5909 //见官方题解 // BestCoder Round #88 http://bestcoder.hdu.edu.cn/ #include <bits/ ...

随机推荐

  1. 奇怪吸引子---NoseHoover

    奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...

  2. WebSocket——为Web应用带来桌面应用般的灵活性【转载+整理】

    原文地址 本文内容 WebSocket 简介 浏览器端的 JavaScript 实现 Java 端的 WebSocket 实现 对 Web 应用的重新思考 使用WebSocket时所需注意的要点 We ...

  3. hadoop from rookie to ninja - 1. Basic Architecture(基础架构)

    1. Daemons(守护进程) 新老架构 老的: Apache Hadoop 1.x (MRv1)   新的: Apache Hadoop 2.x (YARN)-Yet Another Resour ...

  4. 使用yocs_velocity_smoother对机器人速度进行限制

    yocs_velocity_smoother是一个速度.加速度限制器,用来防止robot navigation的速度/转速过快,加速度/快减速过大.Bound incoming velocity me ...

  5. Django Web开发学习笔记(5)

    第五部分 Model 层 创建一个app工程.app和project的区别引用DjangoBook的说法是: 一个project包含很多个Django app以及对它们的配置. 技术上,project ...

  6. SNF开发平台WinForm-Grid表格控件大全

    我们在开发系统时,会有很多种控件进行展示,甚至有一些为了方便的一些特殊需求. 那么下面就介绍一些我们在表格控件里常用的方便的控件:   1.Grid表格查询条 Grid表格下拉 3.Grid表格弹框选 ...

  7. 0x01 Spring Cloud 概述

    Spring Cloud Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智能路由,微代理,控制总线,一次性令牌,全局锁定,领导选举,分 ...

  8. jpush在有网的情况下6002

    网络处理问题. https://www.jpush.cn/qa/?qa=2476/%E7%BD%91%E7%BB%9C%E6%AD%A3%E5%B8%B8%E7%9A%84%E6%83%85%E5%8 ...

  9. 模仿jQuery的ajax的封装

    /* * 我们使用了ajax 的xmlHttpRequest 跟服务器进行交互. * * 交互了有四个基本步骤 * 1:创建对象 * 2:建立连接 * 3:发送请求 * 4:接收数据 * * 这些操作 ...

  10. docker打包centos增加中文支持

    docker打包centos增加中文支持 前言 使用的某个包的返回值,在本机测试时返回结果是中文,结果打包到docker后返回结果变英文了:猜测是系统语言的问题,进入docker测试了一下,发现果然是 ...