Codility NumberSolitaire Solution
1.题目:
A game for one player is played on a board consisting of N consecutive squares, numbered from 0 to N − 1. There is a number written on each square. A non-empty zero-indexed array A of N integers contains the numbers written on the squares. Moreover, some squares can be marked during the game.
At the beginning of the game, there is a pebble on square number 0 and this is the only square on the board which is marked. The goal of the game is to move the pebble to square number N − 1.
During each turn we throw a six-sided die, with numbers from 1 to 6 on its faces, and consider the number K, which shows on the upper face after the die comes to rest. Then we move the pebble standing on square number I to square number I + K, providing that square number I + K exists. If square number I + K does not exist, we throw the die again until we obtain a valid move. Finally, we mark square number I + K.
After the game finishes (when the pebble is standing on square number N − 1), we calculate the result. The result of the game is the sum of the numbers written on all marked squares.
For example, given the following array:
A[0] = 1
A[1] = -2
A[2] = 0
A[3] = 9
A[4] = -1
A[5] = -2
one possible game could be as follows:
- the pebble is on square number 0, which is marked;
- we throw 3; the pebble moves from square number 0 to square number 3; we mark square number 3;
- we throw 5; the pebble does not move, since there is no square number 8 on the board;
- we throw 2; the pebble moves to square number 5; we mark this square and the game ends.
The marked squares are 0, 3 and 5, so the result of the game is 1 + 9 + (−2) = 8. This is the maximal possible result that can be achieved on this board.
Write a function:
int solution(int A[], int N);
that, given a non-empty zero-indexed array A of N integers, returns the maximal result that can be achieved on the board represented by array A.
For example, given the array
A[0] = 1
A[1] = -2
A[2] = 0
A[3] = 9
A[4] = -1
A[5] = -2
the function should return 8, as explained above.
Assume that:
- N is an integer within the range [2..100,000];
- each element of array A is an integer within the range [−10,000..10,000].
Complexity:
- expected worst-case time complexity is O(N);
- expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).
Elements of input arrays can be modified.
2.题目分析
这个题目写的超级复杂,其实说的内容很简单,就是我们掷骰子,1~6,代表向前走几步。那么一个棋盘的长度为N,每个节点上有一个数字,我们要通过掷色子刚好走到最后一个格子,在这个过程中会经过x个点。问题就是要我们输出这x个点最大可能的和是多少。
这个题如果不是看了关于dynamicprogramming的介绍的话一下子就蒙傻逼了。这个可能小多啊,跳到所有的正数是没话说,不过因为有负数,如何选择我跳入那个负数,避开哪个负数?如果有一长串的负数我如何跳入?更何况时间复杂度要求为O(N)。。这。。头好大。
但是有了dynamic这个算法,我们便可以换一个思路来向这个问题。
我们并不是要向后看,而是向前看。有点数学归纳法的赶脚。
首先,我们随便的站到位置W上。那么,如果要到达这个点,只能是从其前6个位置跳过来的,因为色子最大就到6呢。
那么如果问题到这个点结束,因为W位置上的数字是固定的,那么要跳到这个点时和为最大,则需要找到前六个点中的最大值即可。那么以此类推,最终会回到第0个位置。这个位置的最大值是固定的就是其本身。我们便可以递推的推出所有位置的最大值~
而且我们在每一个位置,内循环查找的最大次数为6,所以即使我有两层循环,那么时间复杂度也只是6N~=O(N)。线性。
我们还需要一个数组存储每一个位置的最大值需要N个空间。
3.代码
int maxLastSix(int A[],int pos)
{
int step=;
int result = A[pos-step];
while((pos-step)>=)
{
if(step>)
{
return result;
}
result = (result>A[pos-step])?result:A[pos-step];
step++;
}
return result;
} int solution(int A[], int N) {
// write your code in C99
int dp[N];
int i=; dp[]=A[]; for(i=;i<N;i++)
{
int temp = maxLastSix(dp,i);
dp[i]=A[i]+temp;
// printf("%d\n",temp);
} return dp[N-];
}
Codility NumberSolitaire Solution的更多相关文章
- codility flags solution
How to solve this HARD issue 1. Problem: A non-empty zero-indexed array A consisting of N integers i ...
- Solution of NumberOfDiscIntersections by Codility
question:https://codility.com/programmers/lessons/4 this question is seem like line intersections qu ...
- Solution to Triangle by Codility
question: https://codility.com/programmers/lessons/4 we need two parts to prove our solution. on one ...
- the solution of CountNonDivisible by Codility
question:https://codility.com/programmers/lessons/9 To solve this question , I get each element's di ...
- GenomicRangeQuery /codility/ preFix sums
首先上题目: A DNA sequence can be represented as a string consisting of the letters A, C, G and T, which ...
- *[codility]Peaks
https://codility.com/demo/take-sample-test/peaks http://blog.csdn.net/caopengcs/article/details/1749 ...
- *[codility]Country network
https://codility.com/programmers/challenges/fluorum2014 http://www.51nod.com/onlineJudge/questionCod ...
- *[codility]AscendingPaths
https://codility.com/programmers/challenges/magnesium2014 图形上的DP,先按照路径长度排序,然后依次遍历,状态是使用到当前路径为止的情况:每个 ...
- *[codility]MaxDoubleSliceSum
https://codility.com/demo/take-sample-test/max_double_slice_sum 两个最大子段和相拼接,从前和从后都扫一遍.注意其中一段可以为0.还有最后 ...
随机推荐
- 【Linux管理】用户管理
每次玩linux都会去网上找一些命令,想想应该记录一下,希望方便大家,当然更方便自己. 1.添加用户 useradd username//添加用户 passwd username//设置密码 2.配置 ...
- (转)浅谈Java中的对象和对象引用
原文地址: http://www.cnblogs.com/dolphin0520/p/3592498.html 在Java中,有一组名词经常一起出现,它们就是"对象和对象引用",很 ...
- C#基础---Queue(队列)的应用
Queue队列,特性先进先出. 在一些项目中我们会遇到对一些数据的Check,如果数据不符合条件将会把不通过的信息返回到界面.但是对于有的数据可能会Check很多条件,如果一个数据一旦很多条件不 ...
- Hanoi问题java解法
用什么语言解法都差不多,思路都是一样,递归,这其中只要注重于开始和结果的状态就可以了,对于中间过程,并不需要深究.(我细细思考了一下,还是算了.=_=) 代码其实很简单注重的是思路. 问题描述:有一个 ...
- 第9章 Shell基础(4)_Bash的运算符及环境变量配置文件
5. Bash的运算符 5.1 数值运算与运算符 5.1.1 declare 声明变量类型:#declare [+/-] [选项] 变量名 选项 说明 - 给变量设定类型属性 + 取消变量的类型属性 ...
- java 集合
1. 2.for循环的时候会改变角标,所以删除需要--,增加需要++ 3.去除重复元素2(用的实质都是对象的equals方法) 4.Treeset 里面的add方法 5.treeSet里面addstu ...
- Linux进程学习
进程与进程管理: 清屏:system("clear"); //#include <signal.h> 进程环境与进程属性: 什么是进程:简单的说,进程就是程序的一次执行 ...
- HTML 学习笔记 JQuery(选择器)
学习前端也有一段时间了,今天终于进入到JQuery阶段了,对于新手来讲,JQuery的选择器类型之多 功能之强大实在不是一天两天能够记得完的.现在,就采用边学边记录的方式.以后要是忘了的话,也有一个地 ...
- Linux 信号量详解一
信号量主要用于进程间(不是线程)的互斥,通过sem_p()函数加锁使用资源,sem_v函数解锁释放资源,在加锁期间,CPU从硬件级别关闭中断,防止pv操作被打断. semget函数 int semge ...
- [LeetCode] Decode Ways 解码方法
A message containing letters from A-Z is being encoded to numbers using the following mapping: 'A' - ...