Java NIO 的核心组成部分:

1.Channels

2.Buffers

3.Selectors

  我们首先来学习Channels(java.nio.channels):

通道

  1)通道基础

  通道(Channel)是java.nio的第二个主要创新。它们既不是一个扩展也不是一项增强,而是全新、极好的Java I/O示例,提供与I/O服务的直接连接。Channel用于在字节缓冲区和位于通道另一侧的实体(通常是一个文件或套接字)之间有效地传输数据。

  channel的jdk源码:

package java.nio.channels;
public interface Channel;
{
public boolean isOpen();
public void close() throws IOException;
}

  与缓冲区不同,通道API主要由接口指定。不同的操作系统上通道实现(Channel Implementation)会有根本性的差异,所以通道API仅仅描述了可以做什么。因此很自然地,通道实现经常使用操作系统的本地代码。通道接口允许您以一种受控且可移植的方式来访问底层的I/O服务。

  Channel是一个对象,可以通过它读取和写入数据。拿 NIO 与原来的 I/O 做个比较,通道就像是流。所有数据都通过 Buffer 对象来处理。您永远不会将字节直接写入通道中,相反,您是将数据写入包含一个或者多个字节的缓冲区。同样,您不会直接从通道中读取字节,而是将数据从通道读入缓冲区,再从缓冲区获取这个字节。

Java NIO 的通道类似流,但又有些不同:

  • 既可以从通道中读取数据,又可以写数据到通道。但流的读写通常是单向的。
  • 通道可以异步地读写。
  • 通道中的数据总是要先读到一个 Buffer,或者总是要从一个 Buffer 中写入。

基本上,所有的 IO 在NIO 中都从一个Channel 开始。Channel 有点象流。 数据可以从Channel读到Buffer中,也可以从Buffer 写到Channel中。这里有个图示: 
                                                      

下面是JAVA NIO中的一些主要Channel的实现: java.nio.channels包中的Channel接口的已知实现类

  • FileChannel:从文件中读写数据。
  • DatagramChannel:能通过UDP读写网络中的数据。
  • SocketChannel:能通过TCP读写网络中的数据。
  • ServerSocketChannel:可以监听新进来的TCP连接,像Web服务器那样。对每一个新进来的连接都会创建一个SocketChannel。

正如你所看到的,这些通道涵盖了UDP 和 TCP 网络IO,以及文件IO。

  2)通道API
  1.文件通道API
  FileChannel类可以实现常用的read,write以及scatter/gather操作,同时它也提供了很多专用于文件的新方法。这些方法中的许多都是我们所熟悉的文件操作。
  FileChannel类的JDK源码:
package java.nio.channels;
public abstract class FileChannel extends AbstractChannel implements ByteChannel, GatheringByteChannel, ScatteringByteChannel
{
// This is a partial API listing
// All methods listed here can throw java.io.IOException
public abstract int read (ByteBuffer dst, long position);
public abstract int write (ByteBuffer src, long position);
public abstract long size();
public abstract long position();
public abstract void position (long newPosition);
public abstract void truncate (long size);
public abstract void force (boolean metaData);
public final FileLock lock();
public abstract FileLock lock (long position, long size, boolean shared);
public final FileLock tryLock();
public abstract FileLock tryLock (long position, long size, boolean shared);
public abstract MappedByteBuffer map (MapMode mode, long position, long size);
public static class MapMode;
public static final MapMode READ_ONLY;
public static final MapMode READ_WRITE;
public static final MapMode PRIVATE;
public abstract long transferTo (long position, long count, WritableByteChannel target);
public abstract long transferFrom (ReadableByteChannel src, long position, long count);
} 

  文件通道总是阻塞式的,因此不能被置于非阻塞模式。现代操作系统都有复杂的缓存和预取机制,使得本地磁盘I/O操作延迟很少。网络文件系统一般而言延迟会多些,不过却也因该优化而受益。面向流的I/O的非阻塞范例对于面向文件的操作并无多大意义,这是由文件I/O本质上的不同性质造成的。对于文件I/O,最强大之处在于异步I/O(asynchronous I/O),它允许一个进程可以从操作系统请求一个或多个I/O操作而不必等待这些操作的完成。发起请求的进程之后会收到它请求的I/O操作已完成的通知。

  FileChannel对象是线程安全(thread-safe)的。多个进程可以在同一个实例上并发调用方法而不会引起任何问题,不过并非所有的操作都是多线程的(multithreaded)。影响通道位置或者影响文件大小的操作都是单线程的(single-threaded)。如果有一个线程已经在执行会影响通道位置或文件大小的操作,那么其他尝试进行此类操作之一的线程必须等待。并发行为也会受到底层的操作系统或文件系统影响。

  每个FileChannel对象都同一个文件描述符(file descriptor)有一对一的关系,所以上面列出的API方法与在您最喜欢的POSIX(可移植操作系统接口)兼容的操作系统上的常用文件I/O系统调用紧密对应也就不足为怪了。本质上讲,RandomAccessFile类提供的是同样的抽象内容。在通道出现之前,底层的文件操作都是通过RandomAccessFile类的方法来实现的。FileChannel模拟同样的I/O服务,因此它的API自然也是很相似的。

  三者之间的方法对比:

  

FILECHANNEL RANDOMACCESSFILE POSIX SYSTEM CALL
read( ) read( ) read( )
write( ) write( ) write( )
size( ) length( ) fstat( )
position( ) getFilePointer( ) lseek( )
position (long newPosition) seek( ) lseek( )
truncate( ) setLength( ) ftruncate( )
force( ) getFD().sync( ) fsync( )

  2.Socket通道
  新的socket通道类可以运行非阻塞模式并且是可选择的。这两个性能可以激活大程序(如网络服务器和中间件组件)巨大的可伸缩性和灵活性。本节中我们会看到,再也没有为每个socket连接使用一个线程的必要了,也避免了管理大量线程所需的上下文交换总开销。借助新的NIO类,一个或几个线程就可以管理成百上千的活动socket连接了并且只有很少甚至可能没有性能损失。所有的socket通道类(DatagramChannel、SocketChannel和ServerSocketChannel)都继承了位于java.nio.channels.spi包中的AbstractSelectableChannel。这意味着我们可以用一个Selector对象来执行socket通道的就绪选择(readiness selection)。

  请注意DatagramChannel和SocketChannel实现定义读和写功能的接口而ServerSocketChannel不实现。ServerSocketChannel负责监听传入的连接和创建新的SocketChannel对象,它本身从不传输数据。

  在我们具体讨论每一种socket通道前,您应该了解socket和socket通道之间的关系。之前的章节中有写道,通道是一个连接I/O服务导管并提供与该服务交互的方法。就某个socket而言,它不会再次实现与之对应的socket通道类中的socket协议API,而java.net中已经存在的socket通道都可以被大多数协议操作重复使用。

  全部socket通道类(DatagramChannel、SocketChannel和ServerSocketChannel)在被实例化时都会创建一个对等socket对象。这些是我们所熟悉的来自java.net的类(Socket、ServerSocket和DatagramSocket),它们已经被更新以识别通道。对等socket可以通过调用socket( )方法从一个通道上获取。此外,这三个java.net类现在都有getChannel( )方法。

  Socket通道将与通信协议相关的操作委托给相应的socket对象。socket的方法看起来好像在通道类中重复了一遍,但实际上通道类上的方法会有一些新的或者不同的行为。

  要把一个socket通道置于非阻塞模式,我们要依靠所有socket通道类的公有超级类:SelectableChannel。就绪选择(readiness selection)是一种可以用来查询通道的机制,该查询可以判断通道是否准备好执行一个目标操作,如读或写。非阻塞I/O和可选择性是紧密相连的,那也正是管理阻塞模式的API代码要在SelectableChannel超级类中定义的原因。

  设置或重新设置一个通道的阻塞模式是很简单的,只要调用configureBlocking( )方法即可,传递参数值为true则设为阻塞模式,参数值为false值设为非阻塞模式。真的,就这么简单!您可以通过调用isBlocking( )方法来判断某个socket通道当前处于哪种模式。

  非阻塞socket通常被认为是服务端使用的,因为它们使同时管理很多socket通道变得更容易。但是,在客户端使用一个或几个非阻塞模式的socket通道也是有益处的,例如,借助非阻塞socket通道,GUI程序可以专注于用户请求并且同时维护与一个或多个服务器的会话。在很多程序上,非阻塞模式都是有用的。

  偶尔地,我们也会需要防止socket通道的阻塞模式被更改。API中有一个blockingLock( )方法,该方法会返回一个非透明的对象引用。返回的对象是通道实现修改阻塞模式时内部使用的。只有拥有此对象的锁的线程才能更改通道的阻塞模式。

2.2.1 ServerSocketChannel
让我们从最简单的ServerSocketChannel来开始对socket通道类的讨论。以下是ServerSocketChannel的完整API:

  public abstract class ServerSocketChannel extends AbstractSelectableChannel
{
public static ServerSocketChannel open() throws IOException;
public abstract ServerSocket socket();
public abstract ServerSocket accept()throws IOException;
public final int validOps();
}  

ServerSocketChannel是一个基于通道的socket监听器。它同我们所熟悉的java.net.ServerSocket执行相同的基本任务,不过它增加了通道语义,因此能够在非阻塞模式下运行。

由于ServerSocketChannel没有bind( )方法,因此有必要取出对等的socket并使用它来绑定到一个端口以开始监听连接。我们也是使用对等ServerSocket的API来根据需要设置其他的socket选项。

同它的对等体java.net.ServerSocket一样,ServerSocketChannel也有accept( )方法。一旦您创建了一个ServerSocketChannel并用对等socket绑定了它,然后您就可以在其中一个上调用accept( )。如果您选择在ServerSocket上调用accept( )方法,那么它会同任何其他的ServerSocket表现一样的行为:总是阻塞并返回一个java.net.Socket对象。如果您选择在ServerSocketChannel上调用accept( )方法则会返回SocketChannel类型的对象,返回的对象能够在非阻塞模式下运行。

如果以非阻塞模式被调用,当没有传入连接在等待时,ServerSocketChannel.accept( )会立即返回null。正是这种检查连接而不阻塞的能力实现了可伸缩性并降低了复杂性。可选择性也因此得到实现。我们可以使用一个选择器实例来注册一个ServerSocketChannel对象以实现新连接到达时自动通知的功能。以下代码演示了如何使用一个非阻塞的accept( )方法:

 package com.ronsoft.books.nio.channels;
import java.nio.ByteBuffer;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.net.InetSocketAddress; public class ChannelAccept
{
public static final String GREETING = "Hello I must be going.\r\n";
public static void main (String [] argv) throws Exception
{
int port = 1234; // default
if (argv.length > 0) {
port = Integer.parseInt (argv [0]);
}
ByteBuffer buffer = ByteBuffer.wrap (GREETING.getBytes());
ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.socket().bind (new InetSocketAddress (port));
ssc.configureBlocking (false);
while (true) {
System.out.println ("Waiting for connections");
SocketChannel sc = ssc.accept();
if (sc == null) {
Thread.sleep (2000);
} else {
System.out.println ("Incoming connection from: " + sc.socket().getRemoteSocketAddress());
buffer.rewind();
sc.write (buffer);
sc.close();
}
}
}
}

2.2.2 SocketChannel

下面开始学习SocketChannel,它是使用最多的socket通道类:

Java NIO中的SocketChannel是一个连接到TCP网络套接字的通道。可以通过以下2种方式创建SocketChannel:

  1. 打开一个SocketChannel并连接到互联网上的某台服务器。
  2. 一个新连接到达ServerSocketChannel时,会创建一个SocketChannel。

打开 SocketChannel

下面是SocketChannel的打开方式:

SocketChannel socketChannel = SocketChannel.open();
socketChannel.connect(new InetSocketAddress("http://jenkov.com", 80));

关闭 SocketChannel

当用完SocketChannel之后调用SocketChannel.close()关闭SocketChannel:

socketChannel.close();  

从 SocketChannel 读取数据

要从SocketChannel中读取数据,调用一个read()的方法之一。以下是例子:

ByteBuffer buf = ByteBuffer.allocate(48);
int bytesRead = socketChannel.read(buf);

  首先,分配一个Buffer。从SocketChannel读取到的数据将会放到这个Buffer中。然后,调用SocketChannel.read()。该方法将数据从SocketChannel 读到Buffer中。read()方法返回的int值表示读了多少字节进Buffer里。如果返回的是-1,表示已经读到了流的末尾(连接关闭了)。

写入 SocketChannel

写数据到SocketChannel用的是SocketChannel.write()方法,该方法以一个Buffer作为参数。示例如下:

String newData = "New String to write to file..." + System.currentTimeMillis();

ByteBuffer buf = ByteBuffer.allocate(48);
buf.clear();
buf.put(newData.getBytes()); buf.flip(); while(buf.hasRemaining()) {
channel.write(buf);
}

  注意SocketChannel.write()方法的调用是在一个while循环中的。Write()方法无法保证能写多少字节到SocketChannel。所以,我们重复调用write()直到Buffer没有要写的字节为止。

非阻塞模式

可以设置 SocketChannel 为非阻塞模式(non-blocking mode).设置之后,就可以在异步模式下调用connect(), read() 和write()了。

connect()

如果SocketChannel在非阻塞模式下,此时调用connect(),该方法可能在连接建立之前就返回了。为了确定连接是否建立,可以调用finishConnect()的方法。像这样:

socketChannel.configureBlocking(false);
socketChannel.connect(new InetSocketAddress("http://jenkov.com", 80)); while(! socketChannel.finishConnect() ){
//wait, or do something else...
}

write()

非阻塞模式下,write()方法在尚未写出任何内容时可能就返回了。所以需要在循环中调用write()。前面已经有例子了,这里就不赘述了。

read()

非阻塞模式下,read()方法在尚未读取到任何数据时可能就返回了。所以需要关注它的int返回值,它会告诉你读取了多少字节。

非阻塞模式与选择器

非阻塞模式与选择器搭配会工作的更好,通过将一或多个SocketChannel注册到Selector,可以询问选择器哪个通道已经准备好了读取,写入等。Selector与SocketChannel的搭配使用会在后面详讲。

2.2.3 DatagramChannel
最后一个socket通道是DatagramChannel。正如SocketChannel对应Socket,ServerSocketChannel对应ServerSocket,每一个DatagramChannel对象也有一个关联的DatagramSocket对象。不过原命名模式在此并未适用:“DatagramSocketChannel”显得有点笨拙,因此采用了简洁的“DatagramChannel”名称。

正如SocketChannel模拟连接导向的流协议(如TCP/IP),DatagramChannel则模拟包导向的无连接协议(如UDP/IP)。

DatagramChannel是无连接的。每个数据报(datagram)都是一个自包含的实体,拥有它自己的目的地址及不依赖其他数据报的数据负载。与面向流的的socket不同,DatagramChannel可以发送单独的数据报给不同的目的地址。同样,DatagramChannel对象也可以接收来自任意地址的数据包。每个到达的数据报都含有关于它来自何处的信息(源地址)。

最后给出一个基本的channel实例:

RandomAccessFile aFile = new RandomAccessFile("data/nio-data.txt", "rw");
FileChannel inChannel = aFile.getChannel();
ByteBuffer buf = ByteBuffer.allocate(48);
int bytesRead = inChannel.read(buf);
//读取的字节数,可能为零,如果该通道已到达流的末尾,则返回 -1
while (bytesRead != -1) { System.out.println("Read " + bytesRead);
buf.flip();
//反转缓冲区
while(buf.hasRemaining()){
System.out.print((char) buf.get());
//读取此缓冲区当前位置的字节,然后该位置递增。
} buf.clear();
bytesRead = inChannel.read(buf);
//从缓冲区读取数据
} aFile.close();

引用链接:感谢文章内容的原创作者;

1.http://www.iteye.com/magazines/132-Java-NIO

2.Java NIO中文版

3.http://www.ibm.com/developerworks/cn/education/java/j-nio/j-nio.html

4.http://www.yangyong.me/java-nio%E5%85%A5%E9%97%A8%E4%B8%8E%E8%AF%A6%E8%A7%A3/

5.http://ifeve.com/socket-channel/

Java NIO学习笔记---Channel的更多相关文章

  1. Java NIO 学习笔记(一)----概述,Channel/Buffer

    目录: Java NIO 学习笔记(一)----概述,Channel/Buffer Java NIO 学习笔记(二)----聚集和分散,通道到通道 Java NIO 学习笔记(三)----Select ...

  2. Java NIO学习笔记

    Java NIO学习笔记 一 基本概念 IO 是主存和外部设备 ( 硬盘.终端和网络等 ) 拷贝数据的过程. IO 是操作系统的底层功能实现,底层通过 I/O 指令进行完成. 所有语言运行时系统提供执 ...

  3. Java NIO 学习笔记(七)----NIO/IO 的对比和总结

    目录: Java NIO 学习笔记(一)----概述,Channel/Buffer Java NIO 学习笔记(二)----聚集和分散,通道到通道 Java NIO 学习笔记(三)----Select ...

  4. Java NIO 学习笔记(六)----异步文件通道 AsynchronousFileChannel

    目录: Java NIO 学习笔记(一)----概述,Channel/Buffer Java NIO 学习笔记(二)----聚集和分散,通道到通道 Java NIO 学习笔记(三)----Select ...

  5. Java NIO 学习笔记(五)----路径、文件和管道 Path/Files/Pipe

    目录: Java NIO 学习笔记(一)----概述,Channel/Buffer Java NIO 学习笔记(二)----聚集和分散,通道到通道 Java NIO 学习笔记(三)----Select ...

  6. Java NIO 学习笔记(四)----文件通道和网络通道

    目录: Java NIO 学习笔记(一)----概述,Channel/Buffer Java NIO 学习笔记(二)----聚集和分散,通道到通道 Java NIO 学习笔记(三)----Select ...

  7. Java NIO 学习笔记(三)----Selector

    目录: Java NIO 学习笔记(一)----概述,Channel/Buffer Java NIO 学习笔记(二)----聚集和分散,通道到通道 Java NIO 学习笔记(三)----Select ...

  8. Java NIO 学习笔记(二)----聚集和分散,通道到通道

    目录: Java NIO 学习笔记(一)----概述,Channel/Buffer Java NIO 学习笔记(二)----聚集和分散,通道到通道 Java NIO 学习笔记(三)----Select ...

  9. 零拷贝详解 Java NIO学习笔记四(零拷贝详解)

    转 https://blog.csdn.net/u013096088/article/details/79122671 Java NIO学习笔记四(零拷贝详解) 2018年01月21日 20:20:5 ...

随机推荐

  1. 【设计模式】jdbc桥连接过程解析

    读多少源码,便知自己有多无知! 想温习一下桥链接模式,然后觉得自己已然吃透了,因为自己写的博客,觉得还是应该更具体一些. 类似于这样的结构: 个人理解:    模式类型:概述:角色:模式的应用场景:结 ...

  2. grid - 它和flex布局有何区别?

    Flexbox布局(Flexible Box)模块旨在提供一个更加有效的方式制定.调整和分布一个容器里的项目布局(基于一维),即使他们的大小是未知或者是动态的.(这里我们称为Flex). Flex布局 ...

  3. 解剖SQLSERVER 第一篇 数据库恢复软件商的黑幕(有删减版)

    解剖SQLSERVER 第一篇  数据库恢复软件商的黑幕(有删减版) 这一系列,我们一起来解剖SQLSERVER 在系列的第一篇文章里本人可能会得罪某些人,但是作为一位SQLSERVER MVP,在我 ...

  4. Oracle表被锁无法问题处理

    1:查出锁定表的信息SELECT s.sid, s.serial#, s.username, s.schemaname, s.osuser, s.process, s.machine,s.termin ...

  5. iOS开源项目之日志框架CocoaLumberjack

    CocoaLumberjack是Mac和iOS上一个集快捷.简单.强大和灵活于一身的日志框架.CocoaLumberjack类似于流行的日志框架(如log4j),但它是专为Objective-C设计的 ...

  6. 【转】redis 消息队列发布订阅模式spring boot实现

    最近做项目的时候写到一个事件推送的场景.之前的实现方式是起job一直查询数据库,看看有没有最新的消息.这种方式非常的不优雅,反正我是不能忍,由于羡慕本身就依赖redis,刚好redis 也有消息队列的 ...

  7. Eclipse环境安装Python插件PyDev

    转载自:http://blog.csdn.net/typa01_kk/article/details/49251247 clipse环境安装Python插件PyDev 软件准备,下载地址,先看安装,再 ...

  8. Apache Spark 2.3.0 重要特性介绍

    文章标题 Introducing Apache Spark 2.3 Apache Spark 2.3 介绍 Now Available on Databricks Runtime 4.0 现在可以在D ...

  9. MySQL 的主从原理和复制过程简述

    一.MySQL 复制的基本过程如下:1. Slave 上面的IO线程连接上 Master,并请求从指定日志文件的指定位置(或者从最开始的日志)之后的日志内容; 2. Master 接收到来自 Slav ...

  10. 【iCore4 双核心板_ARM】例程十七:USB_MSC实验——读/写U盘(大容量存储器)

    实验方法: 1.将跳线冒跳至USB_UART,通过Micro USB 线将iCore4 USB-UART接口与电脑相连. 2.打开PUTTY软件. 3.通过读U盘转接线将U盘(或者读卡器)与iCore ...