这个列表包含与网页抓取和数据处理的Python

网络

  • 通用

    • urllib -网络库(stdlib)。
    • requests -网络库。
    • grab – 网络库(基于pycurl)。
    • pycurl – 网络库(绑定libcurl)。
    • urllib3 – Python HTTP库,安全连接池、支持文件post、可用性高。
    • httplib2 – 网络库。
    • RoboBrowser – 一个简单的、极具Python风格的Python库,无需独立的浏览器即可浏览网页。
    • MechanicalSoup -一个与网站自动交互Python库。
    • mechanize -有状态、可编程的Web浏览库。
    • socket – 底层网络接口(stdlib)。
    • Unirest for Python – Unirest是一套可用于多种语言的轻量级的HTTP库。
    • hyper – Python的HTTP/2客户端。
    • PySocks – SocksiPy更新并积极维护的版本,包括错误修复和一些其他的特征。作为socket模块的直接替换。
  • 异步
    • treq – 类似于requests的API(基于twisted)。
    • aiohttp – asyncio的HTTP客户端/服务器(PEP-3156)。

网络爬虫框架

  • 功能齐全的爬虫

    • grab – 网络爬虫框架(基于pycurl/multicur)。
    • scrapy – 网络爬虫框架(基于twisted),不支持Python3。
    • pyspider – 一个强大的爬虫系统。
    • cola – 一个分布式爬虫框架。
  • 其他
    • portia – 基于Scrapy的可视化爬虫。
    • restkit – Python的HTTP资源工具包。它可以让你轻松地访问HTTP资源,并围绕它建立的对象。
    • demiurge – 基于PyQuery的爬虫微框架。

HTML/XML解析器

  • 通用

    • lxml – C语言编写高效HTML/ XML处理库。支持XPath。
    • cssselect – 解析DOM树和CSS选择器。
    • pyquery – 解析DOM树和jQuery选择器。
    • BeautifulSoup – 低效HTML/ XML处理库,纯Python实现。
    • html5lib – 根据WHATWG规范生成HTML/ XML文档的DOM。该规范被用在现在所有的浏览器上。
    • feedparser – 解析RSS/ATOM feeds。
    • MarkupSafe – 为XML/HTML/XHTML提供了安全转义的字符串。
    • xmltodict – 一个可以让你在处理XML时感觉像在处理JSON一样的Python模块。
    • xhtml2pdf – 将HTML/CSS转换为PDF。
    • untangle – 轻松实现将XML文件转换为Python对象。
  • 清理
    • Bleach – 清理HTML(需要html5lib)。
    • sanitize – 为混乱的数据世界带来清明。

文本处理

用于解析和操作简单文本的库。

  • 通用
  • difflib – (Python标准库)帮助进行差异化比较。
  • Levenshtein – 快速计算Levenshtein距离和字符串相似度。
  • fuzzywuzzy – 模糊字符串匹配。
  • esmre – 正则表达式加速器。
  • ftfy – 自动整理Unicode文本,减少碎片化。
  • 转换
  • unidecode – 将Unicode文本转为ASCII。
  • 字符编码
  • uniout – 打印可读字符,而不是被转义的字符串。
  • chardet – 兼容 Python的2/3的字符编码器。
  • xpinyin – 一个将中国汉字转为拼音的库。
  • pangu.py – 格式化文本中CJK和字母数字的间距。
  • Slug化
  • awesome-slugify – 一个可以保留unicode的Python slugify库。
  • python-slugify – 一个可以将Unicode转为ASCII的Python slugify库。
  • unicode-slugify – 一个可以将生成Unicode slugs的工具。
  • pytils – 处理俄语字符串的简单工具(包括pytils.translit.slugify)。
  • 通用解析器
  • PLY – lex和yacc解析工具的Python实现。
  • pyparsing – 一个通用框架的生成语法分析器。
  • 人的名字
  • 电话号码
  • phonenumbers -解析,格式化,存储和验证国际电话号码。
  • 用户代理字符串

特定格式文件处理

解析和处理特定文本格式的库。

  • 通用
  • tablib – 一个把数据导出为XLS、CSV、JSON、YAML等格式的模块。
  • textract – 从各种文件中提取文本,比如 Word、PowerPoint、PDF等。
  • messytables – 解析混乱的表格数据的工具。
  • rows – 一个常用数据接口,支持的格式很多(目前支持CSV,HTML,XLS,TXT – 将来还会提供更多!)。
  • Office
  • python-docx – 读取,查询和修改的Microsoft Word2007/2008的docx文件。
  • xlwt / xlrd – 从Excel文件读取写入数据和格式信息。
  • XlsxWriter – 一个创建Excel.xlsx文件的Python模块。
  • xlwings – 一个BSD许可的库,可以很容易地在Excel中调用Python,反之亦然。
  • openpyxl – 一个用于读取和写入的Excel2010 XLSX/ XLSM/ xltx/ XLTM文件的库。
  • Marmir – 提取Python数据结构并将其转换为电子表格。
  • PDF
  • PDFMiner – 一个从PDF文档中提取信息的工具。
  • PyPDF2 – 一个能够分割、合并和转换PDF页面的库。
  • ReportLab – 允许快速创建丰富的PDF文档。
  • pdftables – 直接从PDF文件中提取表格。
  • Markdown
  • Python-Markdown – 一个用Python实现的John Gruber的Markdown。
  • Mistune – 速度最快,功能全面的Markdown纯Python解析器。
  • markdown2 – 一个完全用Python实现的快速的Markdown。
  • YAML
  • PyYAML – 一个Python的YAML解析器。
  • CSS
  • ATOM/RSS
  • SQL
  • sqlparse – 一个非验证的SQL语句分析器。
  • HTTP
  • HTTP
  • http-parser – C语言实现的HTTP请求/响应消息解析器。
  • 微格式
  • opengraph – 一个用来解析Open Graph协议标签的Python模块。
  • 可移植的执行体
  • pefile – 一个多平台的用于解析和处理可移植执行体(即PE)文件的模块。
  • PSD
  • psd-tools – 将Adobe Photoshop PSD(即PE)文件读取到Python数据结构。

自然语言处理

处理人类语言问题的库。

  • NLTK -编写Python程序来处理人类语言数据的最好平台。
  • Pattern – Python的网络挖掘模块。他有自然语言处理工具,机器学习以及其它。
  • TextBlob – 为深入自然语言处理任务提供了一致的API。是基于NLTK以及Pattern的巨人之肩上发展的。
  • jieba – 中文分词工具。
  • SnowNLP – 中文文本处理库。
  • loso – 另一个中文分词库。
  • genius – 基于条件随机域的中文分词。
  • langid.py – 独立的语言识别系统。
  • Korean – 一个韩文形态库。
  • pymorphy2 – 俄语形态分析器(词性标注+词形变化引擎)。
  • PyPLN  – 用Python编写的分布式自然语言处理通道。这个项目的目标是创建一种简单的方法使用NLTK通过网络接口处理大语言库。

浏览器自动化与仿真

  • selenium – 自动化真正的浏览器(Chrome浏览器,火狐浏览器,Opera浏览器,IE浏览器)。
  • Ghost.py – 对PyQt的webkit的封装(需要PyQT)。
  • Spynner – 对PyQt的webkit的封装(需要PyQT)。
  • Splinter – 通用API浏览器模拟器(selenium web驱动,Django客户端,Zope)。

多重处理

  • threading – Python标准库的线程运行。对于I/O密集型任务很有效。对于CPU绑定的任务没用,因为python GIL。
  • multiprocessing – 标准的Python库运行多进程。
  • celery – 基于分布式消息传递的异步任务队列/作业队列。
  • concurrent-futures – concurrent-futures 模块为调用异步执行提供了一个高层次的接口。

异步

异步网络编程库

  • asyncio – (在Python 3.4 +版本以上的 Python标准库)异步I/O,时间循环,协同程序和任务。
  • Twisted – 基于事件驱动的网络引擎框架。
  • Tornado – 一个网络框架和异步网络库。
  • pulsar – Python事件驱动的并发框架。
  • diesel – Python的基于绿色事件的I/O框架。
  • gevent – 一个使用greenlet 的基于协程的Python网络库。
  • eventlet – 有WSGI支持的异步框架。
  • Tomorrow – 异步代码的奇妙的修饰语法。

队列

  • celery – 基于分布式消息传递的异步任务队列/作业队列。
  • huey – 小型多线程任务队列。
  • mrq – Mr. Queue – 使用redis & Gevent 的Python分布式工作任务队列。
  • RQ – 基于Redis的轻量级任务队列管理器。
  • simpleq – 一个简单的,可无限扩展,基于Amazon SQS的队列。
  • python-gearman – Gearman的Python API。

云计算

  • picloud – 云端执行Python代码。
  • dominoup.com – 云端执行R,Python和matlab代码。

电子邮件

电子邮件解析库

  • flanker – 电子邮件地址和Mime解析库。
  • Talon – Mailgun库用于提取消息的报价和签名。

网址和网络地址操作

解析/修改网址和网络地址库。

  • URL

    • furl – 一个小的Python库,使得操纵URL简单化。
    • purl – 一个简单的不可改变的URL以及一个干净的用于调试和操作的API。
    • urllib.parse – 用于打破统一资源定位器(URL)的字符串在组件(寻址方案,网络位置,路径等)之间的隔断,为了结合组件到一个URL字符串,并将“相对URL”转化为一个绝对URL,称之为“基本URL”。
    • tldextract – 从URL的注册域和子域中准确分离TLD,使用公共后缀列表。
  • 网络地址

    • netaddr – 用于显示和操纵网络地址的Python库。

网页内容提取

提取网页内容的库。

  • HTML页面的文本和元数据

    • newspaper – 用Python进行新闻提取、文章提取和内容策展。
    • html2text – 将HTML转为Markdown格式文本。
    • python-goose – HTML内容/文章提取器。
    • lassie – 人性化的网页内容检索工具
    • micawber – 一个从网址中提取丰富内容的小库。
    • sumy -一个自动汇总文本文件和HTML网页的模块
    • Haul – 一个可扩展的图像爬虫。
    • python-readability – arc90 readability工具的快速Python接口。
    • scrapely – 从HTML网页中提取结构化数据的库。给出了一些Web页面和数据提取的示例,scrapely为所有类似的网页构建一个分析器。
  • 视频

    • youtube-dl – 一个从YouTube下载视频的小命令行程序。
    • you-get – Python3的YouTube、优酷/ Niconico视频下载器。
  • 维基

    • WikiTeam – 下载和保存wikis的工具。

WebSocket

用于WebSocket的库。

  • Crossbar – 开源的应用消息传递路由器(Python实现的用于Autobahn的WebSocket和WAMP)。
  • AutobahnPython – 提供了WebSocket协议和WAMP协议的Python实现并且开源。
  • WebSocket-for-Python – Python 2和3以及PyPy的WebSocket客户端和服务器库。

DNS解析

  • dnsyo – 在全球超过1500个的DNS服务器上检查你的DNS。
  • pycares – c-ares的接口。c-ares是进行DNS请求和异步名称决议的C语言库。

计算机视觉

  • OpenCV – 开源计算机视觉库。
  • SimpleCV – 用于照相机、图像处理、特征提取、格式转换的简介,可读性强的接口(基于OpenCV)。
  • mahotas – 快速计算机图像处理算法(完全使用 C++ 实现),完全基于 numpy 的数组作为它的数据类型。

代理服务器

  • shadowsocks – 一个快速隧道代理,可帮你穿透防火墙(支持TCP和UDP,TFO,多用户和平滑重启,目的IP黑名单)。
  • tproxy – tproxy是一个简单的TCP路由代理(第7层),基于Gevent,用Python进行配置。

其他Python工具列表

python 爬虫第三方库的更多相关文章

  1. python爬虫---selenium库的用法

    python爬虫---selenium库的用法 selenium是一个自动化测试工具,支持Firefox,Chrome等众多浏览器 在爬虫中的应用主要是用来解决JS渲染的问题. 1.使用前需要安装这个 ...

  2. python安装第三方库报错visual c++ 14.0 is required

    使用python安装第三方库时报错如下: error: Microsoft Visual C++ 14.0 is required. Get it with “Microsoft Visual C++ ...

  3. 在windows系统上使用pip命令安装python的第三方库

    在windows系统上使用pip命令安装python的第三方库 通过cmd启动命令行后,直接输入pip命令,有时候命令行会提示我们pip不是一个指令,这个时候我们可以通过python的集成开发环境里面 ...

  4. python的第三方库

    python的第三方库 https://www.lfd.uci.edu/~gohlke/pythonlibs/

  5. Python安装第三方库的安装技巧

    电脑:Windows10 64位. Python IDE 软件:JetBrains PyCharm Community Edition 2018.1.3 x64 Python version : Py ...

  6. Python爬虫Urllib库的高级用法

    Python爬虫Urllib库的高级用法 设置Headers 有些网站不会同意程序直接用上面的方式进行访问,如果识别有问题,那么站点根本不会响应,所以为了完全模拟浏览器的工作,我们需要设置一些Head ...

  7. Python爬虫Urllib库的基本使用

    Python爬虫Urllib库的基本使用 深入理解urllib.urllib2及requests  请访问: http://www.mamicode.com/info-detail-1224080.h ...

  8. Python 安装 第三方库的安装技巧

    Python 安装 第三方库的安装技巧 我的电脑:Windows 10 64位. Python IDE 软件:PyCharm 2016.1.4 Python version : Python 3.5. ...

  9. Python安装第三方库文件工具——pip

    Python安装第三方库文件一般使用pip. 1.pip的安装 (1)下载pip 进入https://pypi.python.org/pypi/pip#downloads

随机推荐

  1. 牛客小白赛1 F题三视图

    链接:https://www.nowcoder.com/acm/contest/85/F来源:牛客网 题目描述 Etéreo 拿出家里的许多的立方体积木,堆成了一个三维空间中的模型.既然你高考选了技术 ...

  2. 【Oracle】【1】查询N分钟之前的数据

    --查询距离现在N分钟前的数据 1440:表示一天有1440分钟 SYSDATE - 10 :表示10天前 参考博客: 1,oracle 查询十分钟之前的数据 - 胡金水的博客 - CSDN博客 ht ...

  3. mysql使用sql语句根据经纬度计算距离排序

    CREATE TABLE `locationpoint` ( `id` int(11) NOT NULL, `province` varchar(20) NOT NULL, `city` varcha ...

  4. 创建xml树

    XMLElement 节点XMLDocument 节点的CUID操作 XMLNode 抽象类 操作节点 (XMLElement XMLDocument ) XElement xElement = ne ...

  5. ​ oracle分区表(附带按照月自动分区、按天自动分区)

    --list_range  示例   drop table list_range_tab purge; create table list_range_tab(n1 number,n2 date)pa ...

  6. call、apply、bind三者的区别

    先构造函数let xiaowang={ name1:"小王", age:", sex:"男", say:function(){ console.log ...

  7. Ubuntu 14.04(64位)+GTX970+CUDA8.0+Tensorflow配置 (双显卡NVIDIA+Intel集成显卡) ------本内容是长时间的积累,有时间再详细整理

    (后面内容是本人初次玩GPU时,遇到很多坑的问题总结及尝试解决办法.由于买独立的GPU安装会涉及到设备的兼容问题,这里建议还是购买GPU一体机(比如https://item.jd.com/396477 ...

  8. 剑指 offer 面试题31 连续子数组的最大和(动态规划)

    求连续子数组的最大和 题目描述 给定一个整形数组,有正数也有负数,数组中连续一个或多个组成一个子数组,求所有子数组的和的最大值,要求时间复杂度为O(n); 测试用例 给定数组 {1,-2,3,10,- ...

  9. Qt画笔实现波形区域图

    参考文章:https://blog.csdn.net/yuxing55555/article/details/79752978 效果图: void WareArea::paintEvent(QPain ...

  10. suffix word ard ar arian arium atic ation atory ator out ~3

      1★ ard 不好的人   2★ ar ~的:~人物     1● arian ~人.物     2● arium 地点,场地   3●aster   不怎么样的人     1● ast ~人   ...