洛谷P1832 A+B Problem(再升级)

·给定一个正整数n,求将其分解成若干个素数之和的方案总数。

先说我的垃圾思路,根本没有验证它的正确性就xjb写的,过了垃圾样例,还水了20分,笑哭。。。其实差一点就想到正解了,完全背包,我的思路是把背包的物品缩小到了一种,而正解的物品应该是1~n的所有素数,一个素数可以无限放,注意f[0]=1;

F[j]+=f[j-a[i]],把素数a[i]放入背包后,加剩下的数的方案数。

这是我的初始思路:

#include<bits/stdc++.h>
using namespace std;
int n;
int f[]; bool su(int x)
{
for(int i=;i<=sqrt(x);i++)
if(x%i==)
return false;
return true;
} int main()
{
cin>>n;
for(int i=;i<=n;i++)
{
if(su(i))
f[i]=;
f[i]+=f[i-];
}
cout<<f[n];
return ;
}

这是题解:

#include<bits/stdc++.h>
using namespace std;
int n;
unsigned long long f[]; bool su(int x)
{
for(int i=;i<=sqrt(x);i++)
if(x%i==)
return false;
return true;
}
int cnt;
long long a[];
int main()
{
cin>>n;
for(int i=;i<=n;i++)
if(su(i)) a[++cnt]=i;
f[]=;
for(int i=;i<=cnt;i++)
for(int j=a[i];j<=n;j++)
{
f[j]+=f[j-a[i]];
}
cout<<f[n];
return ;
}

A+B Problem(再升级)的更多相关文章

  1. P1832 A+B Problem(再升级)

    P1832 A+B Problem(再升级) 题目提供者 usqwedf 传送门 标签 动态规划 数论(数学相关) 洛谷原创 难度 普及/提高- 通过/提交 107/202 题目背景 ·题目名称是吸引 ...

  2. 洛谷——P1832 A+B Problem(再升级)

    P1832 A+B Problem(再升级) 题目背景 ·题目名称是吸引你点进来的 ·实际上该题还是很水的 题目描述 ·1+1=? 显然是2 ·a+b=? 1001回看不谢 ·哥德巴赫猜想 似乎已呈泛 ...

  3. 洛谷P1832 A+B Problem(再升级) [2017年4月计划 动态规划03]

    P1832 A+B Problem(再升级) 题目背景 ·题目名称是吸引你点进来的 ·实际上该题还是很水的 题目描述 ·1+1=? 显然是2 ·a+b=? 1001回看不谢 ·哥德巴赫猜想 似乎已呈泛 ...

  4. NGK福利再升级,1万枚VAST限时免费送

    NGK在推出持有算力获得SPC空投活动后,福利再升级,于美国加州时间2021年2月8日下午4点推出新人福利活动,注册NGK成为新会员,即可获得0.2枚VAST奖励. VAST免费福利送活动仅送出1万枚 ...

  5. 年中盘点 | 2022年,PaaS 再升级

    作者丨刘世民(Sammy Liu)全文共7741个字,预计阅读需要15分钟 过去十五年,是云计算从无到有突飞猛进的十五年.PaaS作为云计算的重要组成部分,在伴随着云计算高速发展的同时,在云计算产业链 ...

  6. 完全背包【p1832】A+B Problem(再升级)

    Description 给定一个正整数n,求将其分解成若干个素数之和的方案总数. Input 一行:一个正整数n Output 一行:一个整数表示方案总数 素数之和 ? 背包啊. 没一遍切的题都不是水 ...

  7. 洛谷P1832 A+B Problem(再升级) 题解 完全背包方案计数

    题目链接:https://www.luogu.com.cn/problem/P1832 题目大意: 给定一个正整数n,求将其分解成若干个素数之和的方案总数. 解题思路: 首先找到所有 \(\le n\ ...

  8. P1832题解 A+B Problem(再升级)

    万能的打表 既然说到素数,必须先打素数表筛出素数, 每个素数可以无限取,这就是完全背包了. 这次打个质数表: bool b[1001]={1,1,0,0,1,0,1,0,1,1,1,0,1,0,1,1 ...

  9. 洛谷P1832 A+B Problem(再升级)

    放题解 题目传送门 放代码 #include<bits/stdc++.h> using namespace std; ];//n为被分解数 a数组用于存储素数 ];//dp数组用于存储方案 ...

随机推荐

  1. [SDOI2010]古代猪文 (欧拉,卢卡斯,中国剩余)

    [SDOI2010]古代猪文 \(solution:\) 这道题感觉综合性极强,用到了许多数论中的知识: 质因子,约数,组合数 欧拉定理 卢卡斯定理 中国剩余定理 首先我们读题,发现题目需要我们枚举k ...

  2. JavaScript学习 - 基础(一)

    ECMAscript ECMAscript是一个重要的标准,但它并不是JAVAscript唯一的部分,当然,也不是唯一标准化的部分,实际上,一个完整的JAVAscript实现是由一下3个不同的部分组成 ...

  3. 基于theano的降噪自动编码器(Denoising Autoencoders--DA)

    1.自动编码器 自动编码器首先通过下面的映射,把输入 $x\in[0,1]^{d}$映射到一个隐层 $y\in[0,1]^{d^{'}}$(编码器): $y=s(Wx+b)$ 其中 $s$ 是非线性的 ...

  4. LibreOJ 题解汇总

    目录 #1. A + B Problem #2. Hello, World! #3. Copycat #4. Quine #7. Input Test #100. 矩阵乘法 #101. 最大流 #10 ...

  5. Windows下Anaconda的安装和简单使用

    Windows下Anaconda的安装和简单使用 Anaconda is a completely free Python distribution (including for commercial ...

  6. UML和模式应用4:初始阶段(4)--需求制品之用例模型模板示例

    1. 前言 UP开发包括四个阶段:初始阶段.细化阶段.构建阶段.移交阶段: UP每个阶段包括 业务建模.需求.设计等科目: 其中需求科目对应的需求制品包括:设想.业务规则.用例模型.补充性规格说明.词 ...

  7. 一个有趣的小例子,带你入门协程模块-asyncio

    一个有趣的小例子,带你入门协程模块-asyncio 上篇文章写了关于yield from的用法,简单的了解异步模式,[https://www.cnblogs.com/c-x-a/p/10106031. ...

  8. Python3学习笔记07-List

    Python有6个序列的内置类型,但最常见的是列表和元 序列都可以进行的操作包括索引,切片,加,乘,检查成员. 此外,Python已经内置确定序列的长度以及确定最大和最小的元素的方法. 创建一个列表, ...

  9. Unity 发送游戏画面到 Winform

    一.首先看一下Unity界面: 设了2个摄像机,位置重叠,旋转相同,父子关系,在父摄像机上加上脚本A.cs,并将子摄像机复制给A脚本中的变量Cam: Cam用于为RenderTexture提供画面,P ...

  10. Python select IO多路复用

    一.select介绍 Python的select()函数是底层操作系统实现的直接接口.它监视套接字,打开文件和管道(任何带有返回有效文件描述符的fileno()方法),直到它们变得可读或可写,或者发生 ...