朴素贝叶斯(naive bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法。

  • 优点:在数据较少的情况下仍然有效,可以处理多分类问题。
  • 缺点:对入输入数据的准备方式较为敏感。
  • 使用数据类型:标称型数据。

下面从一个简单问题出发,介绍怎么使用朴素贝叶斯解决分类问题。 
一天,老师问了个问题,只根据头发和声音怎么判断一位同学的性别。 
为了解决这个问题,同学们马上简单的统计了7位同学的相关特征,数据如下:

头发 声音 性别

这个问题之前用决策树做过了,这里我们换一种思路。 
要是知道男生和女生头发长短的概率以及声音粗细的概率,我们就可以计算出各种情况的概率,然后比较概率大小,来判断性别。 
假设抽样样本足够大,我们可以近似认为可以代表所有数据,假设上位7位同学能代表所有数据,这里方便计算~ 
由这7位同学,我们马上得出下面表格概率分布。

性别 头发长 声音粗
1/3 1
3/5 3/5

假设头发和声音都是独立特征,于是 
男生头发长声音粗的概率=3/8*1/3*1=1/8 
女生头发长声音粗的概率=5/8*3/5*3/5=9/40 
因为1/8<9/40所以如果一个人,头发长,声音粗,那么这个人更可能是女生,于是出现这些特征就是女生。其他特征依次类推。 
这就是朴素贝叶斯分类方法。是的,就是这么简单。 
下面来解释原理,先看贝叶斯公式: 

公式中,事件Bi的概率为P(Bi),事件Bi已发生条件下事件A的概率为P(A│Bi),事件A发生条件下事件Bi的概率为P(Bi│A)。 
带入我们的例子中,判断头发长的人性别: 
P(男|头发长)=P(头发长|男)*P(男)/P(头发长) 
P(女|头发长)=P(头发长|女)*P(女)/P(头发长) 
判断头发长、声音粗的人性别: 
P(男|头发长声音粗)=P(头发长|男)P(声音粗|男)*P(男)/P(头发长声音粗) 
P(女|头发长声音粗)=P(头发长|女)P(声音粗|女)*P(女)/P(头发长声音粗) 
可以看到,比较最后比较概率,只用比较分子即可。也就是前面计算头发长声音粗的人是男生女生的概率。

下面应用于文本分类,文本分类不想上面例子有具体的特征,需先建立文本特征。以下为文本分类的一个简单例子。

 # _*_ coding:utf-8 _*_
from numpy import *
import re
import random def loadDataSet(): #创建样例数据
postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0, 1, 0, 1, 0, 1] #1代表脏话
return postingList, classVec def createVocabList(dataSet): #创建词库 这里就是直接把所有词去重后,当作词库
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document)
return list(vocabSet) def setOfWords2Vec(vocabList, inputSet): #文本词向量。词库中每个词当作一个特征,文本中就该词,该词特征就是1,没有就是0
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word: %s is not in my Vocabulary!" % word)
return returnVec def trainNB0(trainMatrix, trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory) / float(numTrainDocs)
p0Num = ones(numWords) #防止某个类别计算出的概率为0,导致最后相乘都为0,所以初始词都赋值1,分母赋值为2.
p1Num = ones(numWords)
p0Denom = 2
p1Denom = 2
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num / p1Denom) #这里使用了Log函数,方便计算,因为最后是比较大小,所有对结果没有影响。
p0Vect = log(p0Num / p0Denom)
return p0Vect, p1Vect, pAbusive def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1): #比较概率大小进行判断,
p1 = sum(vec2Classify*p1Vec)+log(pClass1)
p0 = sum(vec2Classify*p0Vec)+log(1-pClass1)
if p1>p0:
return 1
else:
return 0 def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love', 'my', 'dalmation'] # 测试数据
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = ['stupid', 'garbage'] # 测试数据
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print(testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)) if __name__=='__main__':
testingNB()
 #输出结果
['love', 'my', 'dalmation'] classified as: 0
['stupid', 'garbage'] classified as: 1

参考: 
- Machine Learning in Action 
- 统计学习方法

转载:http://blog.csdn.net/csqazwsxedc/article/details/69488938

朴素贝叶斯文本分类(python代码实现)的更多相关文章

  1. 朴素贝叶斯文本分类-在《红楼梦》作者鉴别的应用上(python实现)

    朴素贝叶斯算法简单.高效.接下来我们来介绍其如何应用在<红楼梦>作者的鉴别上. 第一步,当然是先得有文本数据,我在网上随便下载了一个txt(当时急着交初稿...).分类肯定是要一个回合一个 ...

  2. Mahout朴素贝叶斯文本分类

    Mahout朴素贝叶斯文本分类算法 Mahout贝叶斯分类器按照官方的说法,是按照<Tackling the PoorAssumptions of Naive Bayes Text Classi ...

  3. 朴素贝叶斯文本分类实现 python cherry分类器

    贝叶斯模型在机器学习以及人工智能中都有出现,cherry分类器使用了朴素贝叶斯模型算法,经过简单的优化,使用1000个训练数据就能得到97.5%的准确率.虽然现在主流的框架都带有朴素贝叶斯模型算法,大 ...

  4. 详解使用EM算法的半监督学习方法应用于朴素贝叶斯文本分类

    1.前言 对大量需要分类的文本数据进行标记是一项繁琐.耗时的任务,而真实世界中,如互联网上存在大量的未标注的数据,获取这些是容易和廉价的.在下面的内容中,我们介绍使用半监督学习和EM算法,充分结合大量 ...

  5. 朴素贝叶斯文本分类java实现

    package com.data.ml.classify; import java.io.File; import java.util.ArrayList; import java.util.Coll ...

  6. 利用朴素贝叶斯算法进行分类-Java代码实现

    http://www.crocro.cn/post/286.html 利用朴素贝叶斯算法进行分类-Java代码实现  鳄鱼  3个月前 (12-14)  分类:机器学习  阅读(44)  评论(0) ...

  7. 朴素贝叶斯算法的python实现方法

    朴素贝叶斯算法的python实现方法 本文实例讲述了朴素贝叶斯算法的python实现方法.分享给大家供大家参考.具体实现方法如下: 朴素贝叶斯算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类 ...

  8. NBC朴素贝叶斯分类器 ————机器学习实战 python代码

    这里的p(y=1|x)计算基于朴素贝叶斯模型(周志华老师机器学习书上说的p(xi|y=1)=|Dc,xi|/|Dc|) 也可以基于文本分类的事件模型 见http://blog.csdn.net/app ...

  9. 朴素贝叶斯分类算法介绍及python代码实现案例

    朴素贝叶斯分类算法 1.朴素贝叶斯分类算法原理 1.1.概述 贝叶斯分类算法是一大类分类算法的总称 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据 朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一 ...

随机推荐

  1. Join Algorithm

    Join(SQL) An SQL join clause combines columns from one or more tables in a relational database. It c ...

  2. Python 基础关于编码

    一.编码的种类: 1 acsic码   基本不用    不同编码之间互用会产生乱码, 2unicode    A 字母  4个字节   00000000 00000000 00100100 01000 ...

  3. crontab的定时任务实例

    实例1:每1分钟执行一次myCommand * * * * * myCommand 实例2:每小时的第3和第15分钟执行 3,15 * * * * myCommand 实例3:在上午8点到11点的第3 ...

  4. python列举django中间件的5个请求方法

    process——request:请求进来时,权限认证. process——view:路由匹配之后,能够得到试图的试图函数. process——exceptions:异常是执行. process——t ...

  5. php CURL 发送get,post请求

    // 发送一个get请求 $url 发送地址    function get($url)    {        //初始化操作        $curl = curl_init($url);     ...

  6. python day05作业

  7. promise、async和await之执行顺序

    async function async1(){ console.log('async1 start') await async2() console.log('async1 end') } asyn ...

  8. OpenID 配置步骤

    允许客户端基于授权服务器执行的身份验证来验证最终用户的身份,以及以可互操作和类似REST的方式获取关于最终用户的基本配置文件信息. 创建一个MVC客户端 1.新建一个ASP.NET Core MVC应 ...

  9. 微软Power BI 每月功能更新系列——9月Power BI 新功能学习

    Power BI Desktop 9月新功能摘要 Power BI 9月更新如期而至,这一次Power BI 又推出了新功能——聚合预览,它可在内存中无缝地存储汇总值,大大提高报告的性能.另外本月还包 ...

  10. ORACLE函数、连接查询、约束

    *ORDER BY 子句在SELECT语句的结尾. 使用外连接可以查询不满足连接条件的数据 with字句 字符函数lower upper initcap concat substr length in ...