1. 使用redis有哪些好处?

(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)

(2) 支持丰富数据类型,支持string,list,set,sorted set,hash

(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行

(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除

2. redis相比memcached有哪些优势?

(1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型

(2) redis的速度比memcached快很多

(3) redis可以持久化其数据

3. redis常见性能问题和解决方案:

(1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件

(2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次

(3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内

(4) 尽量避免在压力很大的主库上增加从库

(5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3…

这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。

4. MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据

相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:

voltile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰

volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰

volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰

allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰

allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰

no-enviction(驱逐):禁止驱逐数据

5. Memcache与Redis的区别都有哪些?

1)、存储方式

Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。

Redis有部份存在硬盘上,这样能保证数据的持久性。

2)、数据支持类型

Memcache对数据类型支持相对简单。

Redis有复杂的数据类型。

3)、使用底层模型不同

它们之间底层实现方式 以及与客户端之间通信的应用协议不一样。

Redis直接自己构建了VM 机制 ,因为一般的系统调用系统函数的话,会浪费一定的时间去移动和请求。

4),value大小

redis最大可以达到1GB,而memcache只有1MB

6. Redis 常见的性能问题都有哪些?如何解决?

1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。

2).Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。

3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。

4). Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内

7, redis 最适合的场景

Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢?

如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:

1 、Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
     2 、Redis支持数据的备份,即master-slave模式的数据备份。
     3 、Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。

(1)、会话缓存(Session Cache)

最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗?

幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。

(2)、全页缓存(FPC)

除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。

再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端

此外,对WordPress的用户来说,Pantheon有一个非常好的插件  wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。

(3)、队列

Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。

如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。

(4),排行榜/计数器

Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可:

当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行:

ZRANGE user_scores 0 10 WITHSCORES

Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。

(5)、发布/订阅

最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来建立聊天系统!(不,这是真的,你可以去核实)。

Redis提供的所有特性中,我感觉这个是喜欢的人最少的一个,虽然它为用户提供如果此多功能。

redis的优缺点和使用场景的更多相关文章

  1. Redis高级特性及应用场景

    Redis高级特性及应用场景 redis中键的生存时间(expire) redis中可以使用expire命令设置一个键的生存时间,到时间后redis会自动删除它. 过期时间可以设置为秒或者毫秒精度. ...

  2. 国内外三个不同领域巨头分享的Redis实战经验及使用场景

    Redis不是比较成熟的memcache或者Mysql的替代品,是对于大型互联网类应用在架构上很好的补充.现在有越来越多的应用也在纷纷基于Redis做架构的改造.首先简单公布一下Redis平台实际情况 ...

  3. Redis作为消息队列服务场景应用案例

    NoSQL初探之人人都爱Redis:(3)使用Redis作为消息队列服务场景应用案例   一.消息队列场景简介 “消息”是在两台计算机间传送的数据单位.消息可以非常简单,例如只包含文本字符串:也可以更 ...

  4. NodeJS优缺点及适用场景讨论

    概述:NodeJS宣称其目标是“旨在提供一种简单的构建可伸缩网络程序的方法”,那么它的出现是为了解决什么问题呢,它有什么优缺点以及它适用于什么场景呢? 本文就个人使用经验对这些问题进行探讨. 一. N ...

  5. (转)国内外三个不同领域巨头分享的Redis实战经验及使用场景

    随着应用对高性能需求的增加,NoSQL逐渐在各大名企的系统架构中生根发芽.这里我们将为大家分享社交巨头新浪微博.传媒巨头Viacom及图片分享领域佼佼者Pinterest带来的Redis实践,首先我们 ...

  6. Ajax原理、优缺点及应用场景

    前言 Ajax的全称为Asynchronous JavaScript And Xml,是一种web客户端与服务器端异步通信的技术,如今,可以说是web开发人员必须掌握的的一项技能了.本文讲述了Ajax ...

  7. 一:Redis的7个应用场景

    Redis的7个应用场景   一:缓存——热数据 热点数据(经常会被查询,但是不经常被修改或者删除的数据),首选是使用redis缓存,毕竟强大到冒泡的QPS和极强的稳定性不是所有类似工具都有的,而且相 ...

  8. Redis实战经验及使用场景

    随着应用对高性能需求的增加,NoSQL逐渐在各大名企的系统架构中生根发芽.这里我们将为大家分享社交巨头新浪微博.传媒巨头Viacom及图片分享领域佼佼者Pinterest带来的Redis实践,首先我们 ...

  9. 细说Redis(一)之 Redis的数据结构与应用场景

    这一篇文章主要介绍Redis的数据结构与应用场景 NOSQL之Redis Redis是一款由key-value存储的软件.说起NOSQL,有文档型.键值型.列型存储.图形数据库.其中,在简单的读写性能 ...

随机推荐

  1. linux中按照指定内容查找文件

    grep -rnRi 指定的内容 * | awk -F":" '{print $1}' 解释: grep 查找文件内容 -r 表示递归查找 -n 表示显示行号 -R 表示查找所有文 ...

  2. mysql 数据库操作 数据库的增删改查

    一 系统数据库 information_schema: 虚拟库,不占用磁盘空间,存储的是数据库启动后的一些参数,如用户表信息.列信息.权限信息.字符信息等performance_schema: MyS ...

  3. what's the 回撤

    什么是“回撤”? “回撤”是个谓语,前面隐含了一个主语.一般来说,没有人说“亏损回撤”的,我们说的“回撤”,通常指“股价回撤”.“市值回撤”.“净值回撤”和“盈利回撤”. “股价回撤”是针对个股的,即 ...

  4. 【BFS宽度优先搜索】

    一.求所有顶点到s顶点的最小步数   //BFS宽度优先搜索 #include<iostream> using namespace std; #include<queue> # ...

  5. AxMIMS系统开发环境搭建

    系统环境:Windows10, VS2013, Qt5.6.2 64bit 1.CloudCompare2.8.1编译 (shapefilelib1.3,geos3.6.1) 2.PCL-1.8.0- ...

  6. NN中BP推导及w不能初始化为0

    转自:为什么w不能初始化为0,而是要随机初始化?https://zhuanlan.zhihu.com/p/27190255 通俗理解BP.https://zhuanlan.zhihu.com/p/24 ...

  7. 【UML】-NO.40.UML.1.UML.1.001-【UML】- uml

    1.0.0 Summary Tittle:[UML]-NO.40.UML.1.UML.1.001-[UML]- uml Style:DesignPattern Series:DesignPattern ...

  8. Struct2中自定义的Filter无效

    解决办法,把自定义的Filter配置放在struct2前 <?xml version="1.0" encoding="UTF-8"?> <we ...

  9. 如何解决gerrit代码冲突

    日常开发中,我们存在多人开发和同一个人提交多次记录的情况,这就避免不了代码冲突的情况出现. 下面介绍几种gerrit提交失败的现象,后续会根据大家遇到的情况,持续更新. 注意:出现合入不了,显示“ca ...

  10. windows go dll 框架

    乘着还没有添加商业功能之前,先给大家把福利分享了 希望有需要的朋友能够用的上 这个框架是在用windows平台,GO做的http/https服务,调用dll现有的库接口实现特定功能的大框架 //dll ...