Linux Makefile 中的陷阱【转】
转自:https://blog.csdn.net/QQ1452008/article/details/52247944
前言
每个编写过Makefile的程序员都可能遇见过Makefile中内含的陷阱,本博文旨在展现陷阱,提醒自己,也供大家一起学习。
本博文会随所遇见的Makefile陷阱有关的问题而进行后续的更新。
陷阱一:在定义变量的语句后面空格之后使用了‘#’注释符
结果:导致变量的值并不是你所赋值的,而是把值与注释符之间的空格一起赋值给了变量,使得执行违背自己的意愿,而不容易察觉。
实例说明如下(Makefile版本:GNU MAKE 3.81):
TmpDir = /Source #此处随意定义了一个目录,
#为了验证此陷阱,特意在赋值语句后空几格并进行注释,
ifeq ($(TmpDir), /Source)
Result = They are equal
else
Result = They are not equal
endif
all:
@echo $(TmpDir)|||||||
@echo $(Result)
make之后其结果为 :
/Source ||||||| (注意:/Source与|之间的空格,其实是属于TmpDir变量的)
They are not equal
若把
ifeq ($(TmpDir), /Source)
改为
ifeq ($(TmpDir), /Source )
说明:/Source后面的空格需要跟定义TmpDir与注释符之间的空格数相等
如此一来,再次make,结果为:They are equal
扩展一:其实验证的过程中也引申出了另一个陷阱,ifeq()语句中的陷阱,见陷阱二
扩展二 : 变量赋值语句存在这个陷阱,那宏定义语句呢?及类似于如下语句
CFLAGS += -DTMP=1 #注释语句
INCFLAGS += -I$(APP_COMMON_SRC_DIR)/Include #注释语句
main:mian.o
gcc $< $(CFLAGS) $(INCFLAGS) -o $@
其实经过实测表明,这样并不会影响宏定义“TMP”在源文件中的值, 以及“INCFLAGS ”所在的路径值。
心得: 通过以上求证,注释符会影响到Makefile文件内部定义使用的变量的值,而不会影响到诸如 -D , -I 后面的值。所以建议Makefile中注释都不要写在语句后面,而是语句的前一行,来避免类似的问题出现。
陷阱二:ifeq语句的括号里面,不要随意使用空格
结果:makefile会吧参数后面的空格也当作参数的一部分来进行比较,导致结果违背自己的意愿。
实例说明如下(Makefile版本:GNU MAKE 3.81):
TmpDir = /Source
#下方的/Source后面空了几格
ifeq ($(TmpDir), /Source )
Result = They are equal
else
Result = They are not equal
endif
all:
@echo $(Result)
make之后其结果为 :
They are not equal
若把
ifeq ($(TmpDir), /Source )
改为
ifeq ($(TmpDir), /Source)
如此一来,再次make,结果为:They are equal
经过实测表明,$(TmpDir)后面空几格没有影响,唯独/Source后面空格就会有影响了
心得 : 在Makefile中,最好保证参数的一致性,是否空格等,不像C语言等语言编程一样,那么宽松。
陷阱三:在mingw环境下使用路径时的陷阱
详情:在正确使用并能生成.d依赖文件,理论上使得修改任一 .h 或者 .c 文件都能自动进行编译的情况下,其结果偏偏就是在修改了.h文件而不能编译与之相关的.c文件,即没有检查到有文件更新,从而没有进行编译。待仔细查看Makefile的内容,也不能轻易看出端倪。其实这背后存在一个不易察觉的陷阱。
例子大概如下:
TARGET = Temp
# abspath 函数:获取其参数中的文件或者目录的绝对路径
APP_BASE = $(abspath ../..)
DEV_BLD_DIR = $(APP_BASE)/$(TARGET)/Build
TEMP = $(APPSRC:.c=.o)
APPOBJS_TMP = $(TEMP:.S=.o)
# addprefix 函数:把 APPOBJS_TMP 中的文件一一添加前缀 $(DEV_BLD_DIR)/
APPOBJS := $(addprefix $(DEV_BLD_DIR)/,$(APPOBJS_TMP))
APPDEPS_TMP = $(APPOBJS_TMP:.o=.d)
APPDEPS := $(addprefix $(DEV_BLD_DIR)/,$(APPDEPS_TMP))
all: Tmp.bin
-include $(APPDEPS)
......
#省略了若干内容
......
# subst 函数:把$@中的 Source 替换成 Build
# 该编译的命令,在编译源文件的同时,也生成了.d 依赖文件
$(DEV_BLD_DIR)/%.o: %.c
$(info Compiling $< ...)
$(CC) -c -o $(subst Source,Build,$@) $(CFLAGS) $(INCFLAGS) $< -MD -MF $(DEV_BLD_DIR)/$*.d -MP
其实从结果上便能大致推测是.d依赖文件部分出现了问题,因为改写任一文件都要能重新编译,本身就是.d依赖文件所要赋予的功能。
陷阱:目标路径的问题,即同一文件目标的引用时要保持路径一致。mingw环境下,windows路径(e.g. c:\agc.o) 和 mingw路径(/c/agc.o)都能够识别,对于make而言, c:\abc.o 和 /c/abc.o 是两个不同的目标。若要是不知道这一知识要点,很难发现 .d 文件开头 c:\ 和 /c/ 的区别。(个人疑点:同一环境,不同工程,有些生成的.d依赖文件中.o目标路径和make中引用的路径是一样的,目前也不知是什么原因,总之这个陷阱还是存在的。)
实例陷阱说明:
#以下行将导入所有的.d依赖文件的内容,即以 /c/...开头的内容
-include $(APPDEPS)
#而以下目标依赖关系中,指明目标的路径则是以 c:\...开头的路径
$(DEV_BLD_DIR)/%.o: %.c
#其结果就是导致了因路径表示的不同,而认为不是同一目标的情况出现
#使得make不能找到.o目标文件依赖的所有依赖源文件,其中包括.h头文件
#自然而然,也就不能因为.h文件的更新,而重新编译对应的.c文件来生成.o文件
解决方法:
既然知道了陷阱所在,就可以利用如下命令来解决该问题:
#通过增加sed命令,把生成的.d依赖文件中的.o目标路径改写就可以了。
$(DEV_BLD_DIR)/%.o: %.c
$(info Compiling $< ...)
$(CC) -c -o $(subst Source,Build,$@) $(CFLAGS) $(INCFLAGS) $< -MD -MF $(DEV_BLD_DIR)/$*.d.tmp -MP
sed 's,.*\.o[ :]*,$@:,g' < $(DEV_BLD_DIR)/$*.d.tmp > $(DEV_BLD_DIR)/$*.d;\
rm -f $(DEV_BLD_DIR)/$*.d.tmp
@echo
心得:以后出现类似该情况,即表面上 makefile 中没有什么问题,但在使用了依赖文件,并修改.h 文件后,不重新编译的情况,这个时候要考虑路径问题。不同路径的表示方法,所表示的目标文件在make中会认为不是同一文件。
--------------------- 本文来自 Jerry_yl_ 的CSDN 博客 ,全文地址请点击:https://blog.csdn.net/QQ1452008/article/details/52247944?utm_source=copy
Linux Makefile 中的陷阱【转】的更多相关文章
- linux makefile中一些复制运算的区别
Makefile 中 :=. ?= .+= .=的区别 = 是最基本的赋值:= 是覆盖之前的值?= 是如果没有被赋值过就赋予等号后面的值,如果已经被赋值则就用之前的赋值+= 是添加等号后面的值
- Linux内核中Makefile、Kconfig和.config的关系(转)
我们在编译Linux内核时,往往在Linux内核的顶层目录会执行一些命令,这里我以RK3288举例,比如:make firefly-rk3288-linux_defconfig.make menuco ...
- 【总结】嵌入式linux内核中Makefile、Kconfig、.config的关系及增加开机Hello World【转】
本文转载自:http://blog.csdn.net/fengyuwuzu0519/article/details/73772109 为了弄清内核的组织结构,我们先来实现下面这个简单的例子. 一.增加 ...
- Vs2012在Linux开发中的应用(6):改写Makefile项目的Build过程
MSBUILD的编译过程实际上是依据一系列的targets文件定义的.当我们在IDE运行生成.批生成.清理命令的时候.VS会查找这些命令相应的Task并运行它,以下我们逐个分析这个过程. 当运行生成操 ...
- 【转】Linux makefile 教程 非常详细,且易懂
From: http://blog.csdn.net/liang13664759/article/details/1771246 最近在学习Linux下的C编程,买了一本叫<Linux环境下的C ...
- Linux makefile 教程 非常详细,且易懂
最近在学习Linux下的C编程,买了一本叫<Linux环境下的C编程指南>读到makefile就越看越迷糊,可能是我的理解能不行. 于是google到了以下这篇文章.通俗易懂.然后把它贴出 ...
- linux Makefile obj-m obj-y
目标定义是Kbuild Makefile的主要部分,也是核心部分.主要是定义了要编 译的文件,所有的选项,以及到哪些子目录去执行递归操作. 最简单的Kbuild makefile 只包含一行: 例子: ...
- 向linux内核中添加外部中断驱动模块
本文主要介绍外部中断驱动模块的编写,包括:1.linux模块的框架及混杂设备的注册.卸载.操作函数集.2.中断的申请及释放.3.等待队列的使用.4.工作队列的使用.5.定时器的使用.6.向linux内 ...
- [软件测试]Linux环境中简单清爽的Google Test (GTest)测试环境搭建(初级使用)
本文将介绍单元测试工具google test(GTEST)在linux操作系统中测试环境的搭建方法.本文属于google test使用的基础教程.在linux中使用google test之前,需要对如 ...
随机推荐
- 自学Linux Shell9.3-基于Red Hat系统工具包:RPM属性依赖的解决方式-YUM在线升级
点击返回 自学Linux命令行与Shell脚本之路 9.3-基于Red Hat系统工具包:RPM属性依赖的解决方式-YUM在线升级 本节主要介绍基于Red Had的系统(测试系统centos) yum ...
- bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)
平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权. 然后从刚才加的s->t分割出来的两面对应的两个点跑最 ...
- Luogu 1081 【NOIP2012】开车旅行 (链表,倍增)
Luogu 1081 [NOIP2012]开车旅行 (链表,倍增) Description 小A 和小B决定利用假期外出旅行,他们将想去的城市从1到N 编号,且编号较小的城市在编号较大的城市的西边,已 ...
- 序列自动机—— [FJOI2016]所有公共子序列问题
序列自动机: 是一个处理子序列的自动机.就这样. 建造:(By猫老师:immoralCO猫) s[] next[][] memset(next[n], -, <<); for(int i ...
- A1039. Course List for Student
Zhejiang University has 40000 students and provides 2500 courses. Now given the student name lists o ...
- property(四十)
一个静态属性property本质就是实现了get,set,delete三种方法 用法: class Foo: @property def AAA(self): print('get的时候运行我啊') ...
- 《CSS揭秘》笔记(一)
前言 我们在现代 CSS 中所面临的挑战已经不在于如何绕过这些转瞬即逝的浏览器 bug.如今的挑战是,在保证 DRY ① .可维护.灵活性.轻量级并且尽可能符合标准的前提下,把我们手中的这些CSS特性 ...
- double
看double精度 和 数字经过计算后的最小精度
- (二维数组 亿进制 或 滚动数组) Hat's Fibonacci hdu1250
Hat's Fibonacci Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- promise第一篇-简介
1. 创建一个promise对象 var promise = new Promise(function(resolve, reject){ //异步处理 //处理结束后调用resolve或reject ...