题意

题目链接

有\(n\)个位置,每次你需要以\(1 \sim n-1\)的一个排列的顺序去染每一个颜色,第\(i\)个数可以把\(i\)和\(i+1\)位置染成黑色。一个排列的价值为最早把所有位置都染成黑色的次数。问所有排列的分数之和

Sol

神仙题Orz

不难想到我们可以枚举染色的次数\(i \in [\lceil \frac{n}{2} \rceil, n - 1]\)。那么问题转化为求有多少排列是在\(i\)次之后把所有位置染成黑色(需要O(1)的复杂度)

我们把这个问题具体化一下,首先第一个位置必须要染,用去一次操作,此时还有\(t = n-2\)个位置没有染。对于一次染色,我们可以把两个位置染成黑色,也可以把一个位置染成黑色。那么问题转化为每次可以让\(t\)\(-1\)或者\(-2\)。问在\(i - 1\)操作后\(t = 0\)的方案数。

这个问题好像还是不好做,但是我们可以去求至多\(i-1\)次操作后\(t=0\)的方案。可以先把每次的\(-1\)算进去,这样每次就变成了\(-0/-1\)那么只要在剩下的\(i-1\)次操作中有\((n-2)-(i-1)\)次选了\(-1\)就一定可行。

因此方案数为\(C_{i-1}^{n-i-1}\),最后每次计算的时候在乘上排列的系数就行了

#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 1e6 + 10, INF = 1e9 + 7, mod = 1000000007;
template<typename A, typename B> inline void chmax(A &x, B y) {
x = x > y ? x : y;
}
template<typename A, typename B> inline void chmin(A &x, B y) {
x = x < y ? x : y;
}
template<typename A, typename B> inline int mul(A x, B y) {
return 1ll * x * y % mod;
}
template<typename A, typename B> inline void add2(A &x, B y) {
if(x + y < 0) x = x + y + mod;
else x = (x + y >= mod ? x + y - mod : x + y);
}
template<typename A, typename B> inline int add(A x, B y) {
if(x + y < 0) return x + y + mod;
else return x + y >= mod ? x + y - mod : x + y;
}
template<typename A, typename B> inline int fp(A a, B p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, fac[MAXN], ifac[MAXN], f[MAXN];
int C(int N, int M) {
if(M > N) return 0;
return mul(fac[N], mul(ifac[M], ifac[N - M]));
}
int main() {
N = read(); fac[0] = 1;
for(int i = 1; i <= N; i++) fac[i] = mul(i, fac[i - 1]);
ifac[N] = fp(fac[N], mod - 2);
for(int i = N; i >= 1; i--) ifac[i - 1] = mul(ifac[i], i);
int down = N / 2 + (N & 1);
for(int i = down; i < N; i++)
f[i] = mul(mul(C(i - 1, N - i - 1), fac[i]), fac[N - i - 1]);
int ans = 0;
for(int i = down; i < N; i++) add2(ans, mul(i, add(f[i], -f[i - 1])));
cout << ans;
return 0;
}
/*
3
0 1 1
5 7 3
*/

agc023C - Painting Machines(组合数)的更多相关文章

  1. AGC023C Painting Machines

    题意 有一排\(n\)个格子,\(i\)操作会使\(i\)和\(i+1\)都变黑. 一个操作序列的得分为染黑所有格子时所用的步数 问所有排列的得分和. \(n\le 10^6\) 传送门 思路 有一个 ...

  2. HDU-4810-wall Painting(二进制, 组合数)

    链接: https://vjudge.net/problem/HDU-4810 题意: Ms.Fang loves painting very much. She paints GFW(Great F ...

  3. AtCoder - 3954 Painting Machines

    题面在这里! 题解见注释 /* 考虑一个可以用 K ((n+1)/2 <= K < n)次染黑的方案, 那么将操作前K次的机器从小到大排序,一定是: a1=1 < a2 < . ...

  4. AtCoder Grand Contest 023 C - Painting Machines

    Description 一个长度为 \(n\) 的序列,初始都为 \(0\),你需要求出一个长度为 \(n-1\) 的排列 \(P\), 按照 \(1\) 到 \(n\) 的顺序,每次把 \(P_i\ ...

  5. P5135 painting(组合数)

    传送门 如果\(op==1\),那么每一个方案都可以看做从\(n\)个数里选出\(m\)个数,然后\(sort\)一下依次放到每列,方案数就是\({n\choose m}\).因为\(n\)很大,但是 ...

  6. [AtCoder3954]Painting Machines

    https://www.zybuluo.com/ysner/note/1230961 题面 有\(n\)个物品和\(n-1\)台机器,第\(i\)台机器会为第\(i\)和\(i+1\)个物品染色.设有 ...

  7. 【AtCoder】AGC023 A-F题解

    可以说是第一场AGC了,做了三道题之后还有30min,杠了一下D题发现杠不出来,三题滚粗了 rating起步1300+,感觉还是很菜... 只有三题水平显然以后还会疯狂--啊(CF的惨痛经历) 改题的 ...

  8. hdu 4810 Wall Painting (组合数+分类数位统计)

    Wall Painting Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  9. [Arc062] Painting Graphs with AtCoDeer

    [Arc062] Painting Graphs with AtCoDeer Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色.你可以对一张染色了的图进行若干次操作, ...

随机推荐

  1. iOS逆向之iOSOpenDev

    上篇谈到使用TheOS进行越狱开发,但是流程相对而言较复杂,本篇我们谈一下iOSOpenDev进行越狱开发.通过使用iOSOpenDev,我们可以使用Xcode进行开发.编译.生成并运行到设备上. 1 ...

  2. 【手记】解决VS发布asp.net项目报错“该项目中不存在目标GatherAllFilesToPublish”及后续问题

    办法在最后. 用VS2017打开一个以前用VS2010写的asp.net项目后,设置好发布选项(发布到文件夹),发布的时候报错如图: 搜索一番,找到的办法是: 在项目文件(xxx.csproj)中,在 ...

  3. 基于ε-NFA的正则表达式引擎

    正则表达式几乎每个程序员都会用到,对于这么常见的一个语言,有没有想过怎么去实现一个呢?乍一想,也许觉得困难,实际上实现一个正则表达式的引擎并没有想像中的复杂,<编译原理>一书中有一章专门讲 ...

  4. idea集成maven

    1 下载maven并解压 至 http://archive.apache.org/dist/maven/maven-3/下载zip包,下载后的包如下: 解压到安装目录下:如:D:\software,解 ...

  5. Linux pwn入门教程(2)——shellcode的使用,原理与变形

    作者:Tangerine@SAINTSEC 0×00 shellcode的使用 在上一篇文章中我们学习了怎么使用栈溢出劫持程序的执行流程.为了减少难度,演示和作业题程序里都带有很明显的后门.然而在现实 ...

  6. Angular使用总结 --- 通过指令动态添加组件

    之前自己写的公共组件,都是会先引入,需要调起的时候再通过service控制公共组件状态.值.回调函数什么的.但是有一些场景不适合这种方式,还是动态添加组件更加好.通过写过的一个小组件来总结下. 创建组 ...

  7. LeetCode:114_Flatten Binary Tree to Linked List | 将一棵二叉树变成链表的形式 | Medium

    要求:Given a binary tree, flatten it to a linked list in-place.将二叉树转化为平坦序列的树.比如: 结题思路: 该题有个提示,转化后的树的序列 ...

  8. Spark基础脚本入门实践3:Pair RDD开发

    Pair RDD转化操作 val rdd = sc.parallelize(List((1,2),(3,4),(3,6))) //reduceByKey,通过key来做合并val r1 = rdd.r ...

  9. JS闭包与JS函数

    先说说在网上看到的一个闭包案例: var add = (function () {var counter = 0;return function () {return counter += 1;}}) ...

  10. 21天打造分布式爬虫-requests库(二)

    2.1.get请求 简单使用 import requests response = requests.get("https://www.baidu.com/") #text返回的是 ...