agc023C - Painting Machines(组合数)
题意
有\(n\)个位置,每次你需要以\(1 \sim n-1\)的一个排列的顺序去染每一个颜色,第\(i\)个数可以把\(i\)和\(i+1\)位置染成黑色。一个排列的价值为最早把所有位置都染成黑色的次数。问所有排列的分数之和
Sol
神仙题Orz
不难想到我们可以枚举染色的次数\(i \in [\lceil \frac{n}{2} \rceil, n - 1]\)。那么问题转化为求有多少排列是在\(i\)次之后把所有位置染成黑色(需要O(1)的复杂度)
我们把这个问题具体化一下,首先第一个位置必须要染,用去一次操作,此时还有\(t = n-2\)个位置没有染。对于一次染色,我们可以把两个位置染成黑色,也可以把一个位置染成黑色。那么问题转化为每次可以让\(t\)\(-1\)或者\(-2\)。问在\(i - 1\)操作后\(t = 0\)的方案数。
这个问题好像还是不好做,但是我们可以去求至多\(i-1\)次操作后\(t=0\)的方案。可以先把每次的\(-1\)算进去,这样每次就变成了\(-0/-1\)那么只要在剩下的\(i-1\)次操作中有\((n-2)-(i-1)\)次选了\(-1\)就一定可行。
因此方案数为\(C_{i-1}^{n-i-1}\),最后每次计算的时候在乘上排列的系数就行了
#include<bits/stdc++.h>
#define LL long long
using namespace std;
const int MAXN = 1e6 + 10, INF = 1e9 + 7, mod = 1000000007;
template<typename A, typename B> inline void chmax(A &x, B y) {
x = x > y ? x : y;
}
template<typename A, typename B> inline void chmin(A &x, B y) {
x = x < y ? x : y;
}
template<typename A, typename B> inline int mul(A x, B y) {
return 1ll * x * y % mod;
}
template<typename A, typename B> inline void add2(A &x, B y) {
if(x + y < 0) x = x + y + mod;
else x = (x + y >= mod ? x + y - mod : x + y);
}
template<typename A, typename B> inline int add(A x, B y) {
if(x + y < 0) return x + y + mod;
else return x + y >= mod ? x + y - mod : x + y;
}
template<typename A, typename B> inline int fp(A a, B p) {
int base = 1;
while(p) {
if(p & 1) base = mul(base, a);
a = mul(a, a); p >>= 1;
}
return base;
}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, fac[MAXN], ifac[MAXN], f[MAXN];
int C(int N, int M) {
if(M > N) return 0;
return mul(fac[N], mul(ifac[M], ifac[N - M]));
}
int main() {
N = read(); fac[0] = 1;
for(int i = 1; i <= N; i++) fac[i] = mul(i, fac[i - 1]);
ifac[N] = fp(fac[N], mod - 2);
for(int i = N; i >= 1; i--) ifac[i - 1] = mul(ifac[i], i);
int down = N / 2 + (N & 1);
for(int i = down; i < N; i++)
f[i] = mul(mul(C(i - 1, N - i - 1), fac[i]), fac[N - i - 1]);
int ans = 0;
for(int i = down; i < N; i++) add2(ans, mul(i, add(f[i], -f[i - 1])));
cout << ans;
return 0;
}
/*
3
0 1 1
5 7 3
*/
agc023C - Painting Machines(组合数)的更多相关文章
- AGC023C Painting Machines
题意 有一排\(n\)个格子,\(i\)操作会使\(i\)和\(i+1\)都变黑. 一个操作序列的得分为染黑所有格子时所用的步数 问所有排列的得分和. \(n\le 10^6\) 传送门 思路 有一个 ...
- HDU-4810-wall Painting(二进制, 组合数)
链接: https://vjudge.net/problem/HDU-4810 题意: Ms.Fang loves painting very much. She paints GFW(Great F ...
- AtCoder - 3954 Painting Machines
题面在这里! 题解见注释 /* 考虑一个可以用 K ((n+1)/2 <= K < n)次染黑的方案, 那么将操作前K次的机器从小到大排序,一定是: a1=1 < a2 < . ...
- AtCoder Grand Contest 023 C - Painting Machines
Description 一个长度为 \(n\) 的序列,初始都为 \(0\),你需要求出一个长度为 \(n-1\) 的排列 \(P\), 按照 \(1\) 到 \(n\) 的顺序,每次把 \(P_i\ ...
- P5135 painting(组合数)
传送门 如果\(op==1\),那么每一个方案都可以看做从\(n\)个数里选出\(m\)个数,然后\(sort\)一下依次放到每列,方案数就是\({n\choose m}\).因为\(n\)很大,但是 ...
- [AtCoder3954]Painting Machines
https://www.zybuluo.com/ysner/note/1230961 题面 有\(n\)个物品和\(n-1\)台机器,第\(i\)台机器会为第\(i\)和\(i+1\)个物品染色.设有 ...
- 【AtCoder】AGC023 A-F题解
可以说是第一场AGC了,做了三道题之后还有30min,杠了一下D题发现杠不出来,三题滚粗了 rating起步1300+,感觉还是很菜... 只有三题水平显然以后还会疯狂--啊(CF的惨痛经历) 改题的 ...
- hdu 4810 Wall Painting (组合数+分类数位统计)
Wall Painting Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- [Arc062] Painting Graphs with AtCoDeer
[Arc062] Painting Graphs with AtCoDeer Description 给定一张N点M边的无向图,每条边要染一个编号在1到K的颜色.你可以对一张染色了的图进行若干次操作, ...
随机推荐
- 9.9 翻译系列:数据注解特性之--MaxLength 【EF 6 Code-First系列】
原文链接:https://www.entityframeworktutorial.net/code-first/maxlength-minlength-dataannotations-attribut ...
- [UWP]如何实现UWP平台最佳图片裁剪控件
前几天我写了一个UWP图片裁剪控件ImageCropper(开源地址),自认为算是现阶段UWP社区里最好用的图片裁剪控件了,今天就来分享下我编码的过程. 为什么又要造轮子 因为开发需要,我们需要使用一 ...
- Akka-Cluster(3)- ClusterClient, 集群客户端
上篇我们介绍了distributed pub/sub消息传递机制.这是在同一个集群内的消息共享机制:发布者(publisher)和订阅者(subscriber)都在同一个集群的节点上,所有节点上的Di ...
- Selenium3 + Python3自动化测试系列一——安装Python+selenium及selenium3 浏览器驱动
一.安装Python https://www.python.org/downloads/ 验证Python是否安装成功.打开Windows命令提示符(cmd),输入python,回车 注意:在安装的过 ...
- .NET内存管理、垃圾回收
1. Stack和Heap 每个线程对应一个stack,线程创建的时候CLR为其创建这个stack,stack主要作用是记录函数的执行情况.值类型变量(函数的参数.局部变量 等非成员变量)都分配 ...
- jdk8- list操作
本文版权归 远方的风lyh和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. student类 public class Student { private String age; ...
- jQgrid学习笔记
jQgrid学习笔记
- PHP 网页数据api采集
一个简单的数据采集,这里用的方法是API数据采集 //api地址,读取文本 $result = file_get_contents("https://feed.mix.sina.com.cn ...
- 一张图读懂PBN旁切转弯计算
当DOC8168进入PBN章节以后,所有的保护区不再标注风螺旋的字母位置点.似乎ICAO已经有了精确计算的方法,只是没有告诉我们.沿着风螺旋的轨迹一路走来,切线与角度的换算方法想必已经相当熟悉了吧,这 ...
- Python 3 进阶 —— 使用 PyMySQL 操作 MySQL
PyMySQL 是一个纯 Python 实现的 MySQL 客户端操作库,支持事务.存储过程.批量执行等. PyMySQL 遵循 Python 数据库 API v2.0 规范,并包含了 pure-Py ...