「索引就像书的目录, 通过书的目录就准确的定位到了书籍具体的内容」,这句话描述的非常正确, 但就像脱了裤子放屁,说了跟没说一样,通过目录查找书的内容自然是要比一页一页的翻书找来的快,同样使用的索引的人难到会不知道,通过索引定位到数据比直接一条一条的查询来的快,不然他们为什么要建索引。

想要理解索引原理必须清楚一种数据结构「平衡树」(非二叉),也就是b tree或者 b+ tree,重要的事情说三遍:“平衡树,平衡树,平衡树”。当然, 有的数据库也使用哈希桶作用索引的数据结构 , 然而, 主流的RDBMS都是把平衡树当做数据表默认的索引数据结构的。

我们平时建表的时候都会为表加上主键, 在某些关系数据库中, 如果建表时不指定主键,数据库会拒绝建表的语句执行。 事实上, 一个加了主键的表,并不能被称之为「表」。一个没加主键的表,它的数据无序的放置在磁盘存储器上,一行一行的排列的很整齐, 跟我认知中的「表」很接近。如果给表上了主键,那么表在磁盘上的存储结构就由整齐排列的结构转变成了树状结构,也就是上面说的「平衡树」结构,换句话说,就是整个表就变成了一个索引。没错, 再说一遍, 整个表变成了一个索引,也就是所谓的「聚集索引」。 这就是为什么一个表只能有一个主键, 一个表只能有一个「聚集索引」,因为主键的作用就是把「表」的数据格式转换成「索引(平衡树)」的格式放置。

上图就是带有主键的表(聚集索引)的结构图。图画的不是很好, 将就着看。其中树的所有结点(底部除外)的数据都是由主键字段中的数据构成,也就是通常我们指定主键的id字段。最下面部分是真正表中的数据。 假如我们执行一个SQL语句:

select * from table where id = 1256;

首先根据索引定位到1256这个值所在的叶结点,然后再通过叶结点取到id等于1256的数据行。 这里不讲解平衡树的运行细节, 但是从上图能看出,树一共有三层, 从根节点至叶节点只需要经过三次查找就能得到结果。如下图

假如一张表有一亿条数据 ,需要查找其中某一条数据,按照常规逻辑, 一条一条的去匹配的话, 最坏的情况下需要匹配一亿次才能得到结果,用大O标记法就是O(n)最坏时间复杂度,这是无法接受的,而且这一亿条数据显然不能一次性读入内存供程序使用, 因此, 这一亿次匹配在不经缓存优化的情况下就是一亿次IO开销,以现在磁盘的IO能力和CPU的运算能力, 有可能需要几个月才能得出结果 。如果把这张表转换成平衡树结构(一棵非常茂盛和节点非常多的树),假设这棵树有10层,那么只需要10次IO开销就能查找到所需要的数据, 速度以指数级别提升,用大O标记法就是O(log n),n是记录总树,底数是树的分叉数,结果就是树的层次数。换言之,查找次数是以树的分叉数为底,记录总数的对数,用公式来表示就是

用程序来表示就是Math.Log(100000000,10),100000000是记录数,10是树的分叉数(真实环境下分叉数远不止10), 结果就是查找次数,这里的结果从亿降到了个位数。因此,利用索引会使数据库查询有惊人的性能提升。

然而, 事物都是有两面的, 索引能让数据库查询数据的速度上升, 而使写入数据的速度下降,原因很简单的, 因为平衡树这个结构必须一直维持在一个正确的状态, 增删改数据都会改变平衡树各节点中的索引数据内容,破坏树结构, 因此,在每次数据改变时, DBMS必须去重新梳理树(索引)的结构以确保它的正确,这会带来不小的性能开销,也就是为什么索引会给查询以外的操作带来副作用的原因。

讲完聚集索引 , 接下来聊一下非聚集索引, 也就是我们平时经常提起和使用的常规索引。

非聚集索引和聚集索引一样, 同样是采用平衡树作为索引的数据结构。索引树结构中各节点的值来自于表中的索引字段, 假如给user表的name字段加上索引 , 那么索引就是由name字段中的值构成,在数据改变时, DBMS需要一直维护索引结构的正确性。如果给表中多个字段加上索引 , 那么就会出现多个独立的索引结构,每个索引(非聚集索引)互相之间不存在关联。 如下图

每次给字段建一个新索引, 字段中的数据就会被复制一份出来, 用于生成索引。 因此, 给表添加索引,会增加表的体积, 占用磁盘存储空间。

非聚集索引和聚集索引的区别在于, 通过聚集索引可以查到需要查找的数据, 而通过非聚集索引可以查到记录对应的主键值 , 再使用主键的值通过聚集索引查找到需要的数据,如下图

不管以任何方式查询表, 最终都会利用主键通过聚集索引来定位到数据, 聚集索引(主键)是通往真实数据所在的唯一路径。

然而, 有一种例外可以不使用聚集索引就能查询出所需要的数据, 这种非主流的方法 称之为「覆盖索引」查询, 也就是平时所说的复合索引或者多字段索引查询。 文章上面的内容已经指出, 当为字段建立索引以后, 字段中的内容会被同步到索引之中, 如果为一个索引指定两个字段, 那么这个两个字段的内容都会被同步至索引之中。

先看下面这个SQL语句

//建立索引

create index index_birthday on user_info(birthday);

//查询生日在1991年11月1日出生用户的用户名

select user_name from user_info where birthday = '1991-11-1'

这句SQL语句的执行过程如下

首先,通过非聚集索引index_birthday查找birthday等于1991-11-1的所有记录的主键ID值

然后,通过得到的主键ID值执行聚集索引查找,找到主键ID值对就的真实数据(数据行)存储的位置

最后, 从得到的真实数据中取得user_name字段的值返回, 也就是取得最终的结果

我们把birthday字段上的索引改成双字段的覆盖索引

create index index_birthday_and_user_name on user_info(birthday, user_name);

这句SQL语句的执行过程就会变为

通过非聚集索引index_birthday_and_user_name查找birthday等于1991-11-1的叶节点的内容,然而, 叶节点中除了有user_name表主键ID的值以外, user_name字段的值也在里面, 因此不需要通过主键ID值的查找数据行的真实所在, 直接取得叶节点中user_name的值返回即可。 通过这种覆盖索引直接查找的方式, 可以省略不使用覆盖索引查找的后面两个步骤, 大大的提高了查询性能,如下图

Sql_索引分析的更多相关文章

  1. MySQL索引分析

    索引的出现解决数据量上升导致查询越来越慢的问题,优化数据的查询,提高查询的速度. 索引 定义: 通过各种数据结构实现的值到行位置的映射.快速定位与访问特定的数据. 作用: 提高访问速度 实现主键.唯一 ...

  2. Elasticsearch的索引模块(正排索引、倒排索引、索引分析模块Analyzer、索引和搜索、停用词、中文分词器)

    正向索引的结构如下: “文档1”的ID > 单词1:出现次数,出现位置列表:单词2:出现次数,出现位置列表:…………. “文档2”的ID > 此文档出现的关键词列表. 一般是通过key,去 ...

  3. MySQL 索引分析

    MySQL复合唯一索引分析 关于复合唯一索引(unique key 或 unique index),网上搜索不少人说:"这种索引起到的关键作用是约束,查询时性能上没有得到提高或者查询时根本没 ...

  4. B+Tree和MySQL索引分析

    首先区分两组概念: 稠密索引,稀疏索引: 聚簇索引,非聚簇索引: btree和mysql的分析: 参见 http://blog.csdn.net/hguisu/article/details/7786 ...

  5. sphinx索引分析——文件格式和字典是double array trie 检索树,索引存储 – 多路归并排序,文档id压缩 – Variable Byte Coding

    1 概述 这是基于开源的sphinx全文检索引擎的架构代码分析,本篇主要描述index索引服务的分析.当前分析的版本 sphinx-2.0.4 2 index 功能 3 文件表 4 索引文件结构 4. ...

  6. SQL Server 2012 列存储索引分析(翻译)

    一.概述 列存储索引是SQL Server 2012中为提高数据查询的性能而引入的一个新特性,顾名思义,数据以列的方式存储在页中,不同于聚集索引.非聚集索引及堆表等以行为单位的方式存储.因为它并不要求 ...

  7. PLSQL_性能优化系列12_Oracle Index Anaylsis索引分析

    2014-10-04 Created By BaoXinjian

  8. Mysql索引分析:适合建索引?不适合建索引?【转】

    数据库建立索引常用的规则如下: 1.表的主键.外键必须有索引: 2.数据量超过300的表应该有索引: 3.经常与其他表进行连接的表,在连接字段上应该建立索引: 4.经常出现在Where子句中的字段,特 ...

  9. MySQL高级知识(五)——索引分析

    前言:前面已经学习了explain(执行计划)的相关知识,这里利用explain对索引进行优化分析. 0.准备 首先创建三张表:tb_emp(职工表).tb_dept(部门表)和tb_desc(描述表 ...

随机推荐

  1. Postgresql_根据执行计划优化SQL

    执行计划路径选择 postgresql查询规划过程中,查询请求的不同执行方案是通过建立不同的路径来表达的,在生成许多符合条件的路径之后,要从中选择出代价最小的路径,把它转化为一个计划,传递给执行器执行 ...

  2. apache 80端口占用问题

    今天安装mongodb后发现apache无法启动 命令行 services.msc 打开服务 在服务里启动Apache2a服务,报错误码1 网上查有很多情况都报的1 可以通过命令行下  执行apach ...

  3. RESTframework简介

    什么是RESTful? RESTful是一种开发理念,REST是Roy Thomas Fileding在他博文提出的.REST特点;url简洁,将参数通过url传递到服务器,简单就是说URL定位资源, ...

  4. IO流_文件切割与合并(带配置信息)

    在切割文件的时候应该生成一个记录文件信息的文件,以便在以后合并文件的时候知道这个文件原来的文件名和记录文件切割完后生成了多少个切割文件 import java.io.File; import java ...

  5. C#的static

    1.static意思是静态,可以修饰类.字段.属性.方法2.标记为static的就不用创建实例对象调用了,可以通过类名直接点出来3.static三种用法:4.用于变量前,表示每次重新使用该变量所在方法 ...

  6. Git提交新项目

    Github或者码云上新建项目 $ git init $ git add * $ git remote add origin https://gitee.com/demo/demo.git $ git ...

  7. UVA1103-Ancient Messages(脑洞+dfs)

    Problem UVA1103-Ancient Messages Accept: 1176  Submit: 6103 Time Limit: 3000 mSec Problem Descriptio ...

  8. exit status 3221225477 npm run dev 报错

    Fatal error in , line 0 # Check failed: U_SUCCESS(status). # # # #FailureMessage Object: 000000B5882 ...

  9. 2190: [SDOI2008]仪仗队

    Description 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是 ...

  10. vue-resource get/post请求如何携带cookie的问题

    vue-resource get/post请求如何携带cookie的问题 当我们使用vue请求的时候,我们会发现请求头中没有携带cookie传给后台,我们可以在请求时添加如下代码:vue.http.o ...