使用缓存是系统性能优化的第一黄金法则。

缓存的设计和使用对一个系统的性能至关重要,平时接触到项目无论多少也都会在某些层面用到缓存,比如用HashMap实现,Ehcache,memcached、redis等。Redis算是目前最火的方案之一,今天看了它相关的一些问题,总结汇总一下。

一、Redis的优缺点及适用场景

Redis 是一个基于内存的高性能key-value数据库。很像memcached,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。它的优点如下:

(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)

(2) 支持丰富数据类型,支持string,list,set,sorted set,hash

(3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行

(4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除
Redis的主要缺点是数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上。

Redis最适合所有数据in-momory的场景,如:

(1)、会话缓存(Session Cache)

最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。

(2)、全页缓存(FPC)

除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。

(3)、队列

Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。

如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。

(4),排行榜/计数器

Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可:

当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行:

ZRANGE user_scores 0 10 WITHSCORES

Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。

(5)、发布/订阅

最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。

二、redis的缓存失效策略和主键失效机制

  作为缓存系统都要定期清理无效数据,就需要一个主键失效和淘汰策略.
  在Redis当中,有生存期的key被称为volatile。在创建缓存时,要为给定的key设置生存期,当key过期的时候(生存期为0),它可能会被删除。
  1、影响生存时间的一些操作
  生存时间可以通过使用 DEL 命令来删除整个 key 来移除,或者被 SET 和 GETSET 命令覆盖原来的数据,也就是说,修改key对应的value和使用另外相同的key和value来覆盖以后,当前数据的生存时间不同。
  比如说,对一个 key 执行INCR命令,对一个列表进行LPUSH命令,或者对一个哈希表执行HSET命令,这类操作都不会修改 key 本身的生存时间。另一方面,如果使用RENAME对一个 key 进行改名,那么改名后的 key的生存时间和改名前一样。
  RENAME命令的另一种可能是,尝试将一个带生存时间的 key 改名成另一个带生存时间的 another_key ,这时旧的 another_key (以及它的生存时间)会被删除,然后旧的 key 会改名为 another_key ,因此,新的 another_key 的生存时间也和原本的 key 一样。使用PERSIST命令可以在不删除 key 的情况下,移除 key 的生存时间,让 key 重新成为一个persistent key 。
  2、如何更新生存时间
  可以对一个已经带有生存时间的 key 执行EXPIRE命令,新指定的生存时间会取代旧的生存时间。过期时间的精度已经被控制在1ms之内,主键失效的时间复杂度是O(1),
  EXPIRE和TTL命令搭配使用,TTL可以查看key的当前生存时间。设置成功返回 1;当 key 不存在或者不能为 key 设置生存时间时,返回 0 。
  最大缓存配置
  在 redis 中,允许用户设置最大使用内存大小
  server.maxmemory
  默认为0,没有指定最大缓存,如果有新的数据添加,超过最大内存,则会使redis崩溃,所以一定要设置。redis 内存数据集大小上升到一定大小的时候,就会实行数据淘汰策略。
  redis 提供 6种数据淘汰策略:
  . volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
  . volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
  . volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
  . allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
  . allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
  . no-enviction(驱逐):禁止驱逐数据
  注意这里的6种机制,volatile和allkeys规定了是对已设置过期时间的数据集淘汰数据还是从全部数据集淘汰数据,后面的lru、ttl以及random是三种不同的淘汰策略,再加上一种no-enviction永不回收的策略。
  使用策略规则:
  1、如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率低,则使用allkeys-lru
  2、如果数据呈现平等分布,也就是所有的数据访问频率都相同,则使用allkeys-random
  三种数据淘汰策略:
  ttl和random比较容易理解,实现也会比较简单。主要是Lru最近最少使用淘汰策略,设计上会对key 按失效时间排序,然后取最先失效的key进行淘汰

三、Redis是单进程单线程的,并发问题如何解决

Redis为单进程单线程模式,采用队列模式将并发访问变为串行访问。Redis本身没有锁的概念,Redis对于多个客户端连接并不存在竞争,但是在Jedis客户端对Redis进行并发访问时会发生连接超时、数据转换错误、阻塞、客户端关闭连接等问题,这些问题均是由于客户端连接混乱造成。对此有2种解决方法:

   1.客户端角度,为保证每个客户端间正常有序与Redis进行通信,对连接进行池化,同时对客户端读写Redis操作采用内部锁synchronized。

   2.服务器角度,利用setnx实现锁。
   注:对于第一种,需要应用程序自己处理资源的同步,可以使用的方法比较通俗,可以使用synchronized也可以使用lock;第二种需要用到Redis的setnx命令,但是需要注意一些问题。

四、redis常见性能问题和解决方案:   

   1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。

   2).Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久

    化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。

   3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。

   4). Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内。

五、redis持久化的几种方式

1、快照(snapshots)
  缺省情况情况下,Redis把数据快照存放在磁盘上的二进制文件中,文件名为dump.rdb。你可以配置Redis的持久化策略,例如数据集中每N秒钟有超过M次更新,就将数据写入磁盘;或者你可以手工调用命令SAVE或BGSAVE。
  工作原理
  . Redis forks.
  . 子进程开始将数据写到临时RDB文件中。
  . 当子进程完成写RDB文件,用新文件替换老文件。
  . 这种方式可以使Redis使用copy-on-write技术。
2、AOF
  快照模式并不十分健壮,当系统停止,或者无意中Redis被kill掉,最后写入Redis的数据就会丢失。这对某些应用也许不是大问题,但对于要求高可靠性的应用来说,
  Redis就不是一个合适的选择。
  Append-only文件模式是另一种选择。
  你可以在配置文件中打开AOF模式
3、虚拟内存方式
  当你的key很小而value很大时,使用VM的效果会比较好.因为这样节约的内存比较大.
  当你的key不小时,可以考虑使用一些非常方法将很大的key变成很大的value,比如你可以考虑将key,value组合成一个新的value.
  vm-max-threads这个参数,可以设置访问swap文件的线程数,设置最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的.可能会造成比较长时间的延迟,但是对数据完整性有很好的保证.

  自己测试的时候发现用虚拟内存性能也不错。如果数据量很大,可以考虑分布式或者其他数据库。

六,其它

Redis和Memcached的区别

1、数据类型支持不同

与Memcached仅支持简单的key-value结构的数据记录不同,Redis支持的数据类型要丰富得多。最为常用的数据类型主要由五种:String、Hash、List、Set和Sorted Set。Redis内部使用一个redisObject对象来表示所有的key和value。redisObject最主要的信息如图所示:

type代表一个value对象具体是何种数据类型,encoding是不同数据类型在redis内部的存储方式,比如:type=string代表value存储的是一个普通字符串,那么对应的encoding可以是raw或者是int,如果是int则代表实际redis内部是按数值型类存储和表示这个字符串的,当然前提是这个字符串本身可以用数值表示,比如:”123″ “456”这样的字符串。只有打开了Redis的虚拟内存功能,vm字段字段才会真正的分配内存,该功能默认是关闭状态的。

1)String

  • 常用命令:set/get/decr/incr/mget等;
  • 应用场景:String是最常用的一种数据类型,普通的key/value存储都可以归为此类;
  • 实现方式:String在redis内部存储默认就是一个字符串,被redisObject所引用,当遇到incr、decr等操作时会转成数值型进行计算,此时redisObject的encoding字段为int。

2)Hash

  • 常用命令:hget/hset/hgetall等
  • 应用场景:我们要存储一个用户信息对象数据,其中包括用户ID、用户姓名、年龄和生日,通过用户ID我们希望获取该用户的姓名或者年龄或者生日;
  • 实现方式:Redis的Hash实际是内部存储的Value为一个HashMap,并提供了直接存取这个Map成员的接口。如图所示,Key是用户ID, value是一个Map。这个Map的key是成员的属性名,value是属性值。这样对数据的修改和存取都可以直接通过其内部Map的Key(Redis里称内部Map的key为field), 也就是通过 key(用户ID) + field(属性标签) 就可以操作对应属性数据。当前HashMap的实现有两种方式:当HashMap的成员比较少时Redis为了节省内存会采用类似一维数组的方式来紧凑存储,而不会采用真正的HashMap结构,这时对应的value的redisObject的encoding为zipmap,当成员数量增大时会自动转成真正的HashMap,此时encoding为ht。
3)List
  • 常用命令:lpush/rpush/lpop/rpop/lrange等;
  • 应用场景:Redis list的应用场景非常多,也是Redis最重要的数据结构之一,比如twitter的关注列表,粉丝列表等都可以用Redis的list结构来实现;
  • 实现方式:Redis list的实现为一个双向链表,即可以支持反向查找和遍历,更方便操作,不过带来了部分额外的内存开销,Redis内部的很多实现,包括发送缓冲队列等也都是用的这个数据结构。
4)Set
  • 常用命令:sadd/spop/smembers/sunion等;
  • 应用场景:Redis set对外提供的功能与list类似是一个列表的功能,特殊之处在于set是可以自动排重的,当你需要存储一个列表数据,又不希望出现重复数据时,set是一个很好的选择,并且set提供了判断某个成员是否在一个set集合内的重要接口,这个也是list所不能提供的;
  • 实现方式:set 的内部实现是一个 value永远为null的HashMap,实际就是通过计算hash的方式来快速排重的,这也是set能提供判断一个成员是否在集合内的原因。

5)Sorted Set

  • 常用命令:zadd/zrange/zrem/zcard等;
  • 应用场景:Redis sorted set的使用场景与set类似,区别是set不是自动有序的,而sorted set可以通过用户额外提供一个优先级(score)的参数来为成员排序,并且是插入有序的,即自动排序。当你需要一个有序的并且不重复的集合列表,那么可以选择sorted set数据结构,比如twitter 的public timeline可以以发表时间作为score来存储,这样获取时就是自动按时间排好序的。
  • 实现方式:Redis sorted set的内部使用HashMap和跳跃表(SkipList)来保证数据的存储和有序,HashMap里放的是成员到score的映射,而跳跃表里存放的是所有的成员,排序依据是HashMap里存的score,使用跳跃表的结构可以获得比较高的查找效率,并且在实现上比较简单。

2、内存管理机制不同

在Redis中,并不是所有的数据都一直存储在内存中的。这是和Memcached相比一个最大的区别。当物理内存用完时,Redis可以将一些很久没用到的value交换到磁盘。Redis只会缓存所有的key的信息,如果Redis发现内存的使用量超过了某一个阀值,将触发swap的操作,Redis根据“swappability = age*log(size_in_memory)”计算出哪些key对应的value需要swap到磁盘。然后再将这些key对应的value持久化到磁盘中,同时在内存中清除。这种特性使得Redis可以保持超过其机器本身内存大小的数据。当然,机器本身的内存必须要能够保持所有的key,毕竟这些数据是不会进行swap操作的。同时由于Redis将内存中的数据swap到磁盘中的时候,提供服务的主线程和进行swap操作的子线程会共享这部分内存,所以如果更新需要swap的数据,Redis将阻塞这个操作,直到子线程完成swap操作后才可以进行修改。当从Redis中读取数据的时候,如果读取的key对应的value不在内存中,那么Redis就需要从swap文件中加载相应数据,然后再返回给请求方。 这里就存在一个I/O线程池的问题。在默认的情况下,Redis会出现阻塞,即完成所有的swap文件加载后才会相应。这种策略在客户端的数量较小,进行批量操作的时候比较合适。但是如果将Redis应用在一个大型的网站应用程序中,这显然是无法满足大并发的情况的。所以Redis运行我们设置I/O线程池的大小,对需要从swap文件中加载相应数据的读取请求进行并发操作,减少阻塞的时间。

3、持久化方案

4、集群管理的不同

Couchbase vs Redis,究竟哪个更胜一筹?

Redis有哪些数据结构?

字符串String、字典Hash、列表List、集合Set、有序集合SortedSet。

如果你是Redis中高级用户,还需要加上下面几种数据结构HyperLogLog、Geo、Pub/Sub。

如果你说还玩过Redis Module,像BloomFilter,RedisSearch,Redis-ML,面试官得眼睛就开始发亮了。

使用过Redis分布式锁么,它是什么回事?

先拿setnx来争抢锁,抢到之后,再用expire给锁加一个过期时间防止锁忘记了释放。

这时候对方会告诉你说你回答得不错,然后接着问如果在setnx之后执行expire之前进程意外crash或者要重启维护了,那会怎么样?

这时候你要给予惊讶的反馈:唉,是喔,这个锁就永远得不到释放了。紧接着你需要抓一抓自己得脑袋,故作思考片刻,好像接下来的结果是你主动思考出来的,然后回答:我记得set指令有非常复杂的参数,这个应该是可以同时把setnx和expire合成一条指令来用的!对方这时会显露笑容,心里开始默念:摁,这小子还不错。

假如Redis里面有1亿个key,其中有10w个key是以某个固定的已知的前缀开头的,如果将它们全部找出来?

使用keys指令可以扫出指定模式的key列表。

对方接着追问:如果这个redis正在给线上的业务提供服务,那使用keys指令会有什么问题?

这个时候你要回答redis关键的一个特性:redis的单线程的。keys指令会导致线程阻塞一段时间,线上服务会停顿,直到指令执行完毕,服务才能恢复。这个时候可以使用scan指令,scan指令可以无阻塞的提取出指定模式的key列表,但是会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用keys指令长。

使用过Redis做异步队列么,你是怎么用的?

一般使用list结构作为队列,rpush生产消息,lpop消费消息。当lpop没有消息的时候,要适当sleep一会再重试。

如果对方追问可不可以不用sleep呢?list还有个指令叫blpop,在没有消息的时候,它会阻塞住直到消息到来。

如果对方追问能不能生产一次消费多次呢?使用pub/sub主题订阅者模式,可以实现1:N的消息队列。

如果对方追问pub/sub有什么缺点?在消费者下线的情况下,生产的消息会丢失,得使用专业的消息队列如rabbitmq等。

如果对方追问redis如何实现延时队列?我估计现在你很想把面试官一棒打死如果你手上有一根棒球棍的话,怎么问的这么详细。但是你很克制,然后神态自若的回答道:使用sortedset,拿时间戳作为score,消息内容作为key调用zadd来生产消息,消费者用zrangebyscore指令获取N秒之前的数据轮询进行处理。

到这里,面试官暗地里已经对你竖起了大拇指。但是他不知道的是此刻你却竖起了中指,在椅子背后。

如果有大量的key需要设置同一时间过期,一般需要注意什么?

如果大量的key过期时间设置的过于集中,到过期的那个时间点,redis可能会出现短暂的卡顿现象。一般需要在时间上加一个随机值,使得过期时间分散一些。

Redis如何做持久化的?

bgsave做镜像全量持久化,aof做增量持久化。因为bgsave会耗费较长时间,不够实时,在停机的时候会导致大量丢失数据,所以需要aof来配合使用。在redis实例重启时,会使用bgsave持久化文件重新构建内存,再使用aof重放近期的操作指令来实现完整恢复重启之前的状态。

对方追问那如果突然机器掉电会怎样?取决于aof日志sync属性的配置,如果不要求性能,在每条写指令时都sync一下磁盘,就不会丢失数据。但是在高性能的要求下每次都sync是不现实的,一般都使用定时sync,比如1s1次,这个时候最多就会丢失1s的数据。

对方追问bgsave的原理是什么?你给出两个词汇就可以了,fork和cow。fork是指redis通过创建子进程来进行bgsave操作,cow指的是copy on write,子进程创建后,父子进程共享数据段,父进程继续提供读写服务,写脏的页面数据会逐渐和子进程分离开来。

Pipeline有什么好处,为什么要用pipeline?

可以将多次IO往返的时间缩减为一次,前提是pipeline执行的指令之间没有因果相关性。使用redis-benchmark进行压测的时候可以发现影响redis的QPS峰值的一个重要因素是pipeline批次指令的数目。

Redis的同步机制了解么?

Redis可以使用主从同步,从从同步。第一次同步时,主节点做一次bgsave,并同时将后续修改操作记录到内存buffer,待完成后将rdb文件全量同步到复制节点,复制节点接受完成后将rdb镜像加载到内存。加载完成后,再通知主节点将期间修改的操作记录同步到复制节点进行重放就完成了同步过程。

是否使用过Redis集群,集群的原理是什么?

Redis Sentinal着眼于高可用,在master宕机时会自动将slave提升为master,继续提供服务。

Redis Cluster着眼于扩展性,在单个redis内存不足时,使用Cluster进行分片存储。

https://mp.weixin.qq.com/s/507jyNbL4xCkxyW6Xk15Xg

Redis缓存相关问题总结的更多相关文章

  1. Redis缓存相关

    Redis缓存服务搭建及实现数据读写 RedisHelper帮助类 /// <summary> /// Redis 帮助类文件 /// </summary> public cl ...

  2. Java缓存相关memcached、redis、guava、Spring Cache的使用

    随笔分类 - Java缓存相关 主要记录memcached.redis.guava.Spring Cache的使用 第十二章 redis-cluster搭建(redis-3.2.5) 摘要: redi ...

  3. ssm+redis 如何更简洁的利用自定义注解+AOP实现redis缓存

    基于 ssm + maven + redis 使用自定义注解 利用aop基于AspectJ方式 实现redis缓存 如何能更简洁的利用aop实现redis缓存,话不多说,上demo 需求: 数据查询时 ...

  4. redis缓存技术

    初学redis缓存技术,如果文章写得不好还请谅解 应用环境:win7 实现环境:cmd,eclipse redis缓存技术的特点就在于高效,因为目前涉及的数据量逐渐增多,在对于数据的存储上面和sql以 ...

  5. Redis缓存项目应用架构设计二

    一.概述 由于架构设计一里面如果多平台公用相同Key的缓存更改配置后需要多平台上传最新的缓存配置文件来更新,比较麻烦,更新了架构设计二实现了缓存配置的集中管理,不过这样有有了过于中心化的问题,后续在看 ...

  6. Redis缓存项目应用架构设计一

    一些项目整理出的项目中引入缓存的架构设计方案,希望能帮助你更好地管理项目缓存,作者水平有限,如有不足还望指点. 一.基础结构介绍 项目中对外提供方法的是CacheProvider和MQProvider ...

  7. Java项目中使用Redis缓存案例

    缓存的目的是为了提高系统的性能,缓存中的数据主要有两种: 1.热点数据.我们将经常访问到的数据放在缓存中,降低数据库I/O,同时因为缓存的数据的高速查询,加快整个系统的响应速度,也在一定程度上提高并发 ...

  8. Redis 缓存失效和回收机制续

    二.Redis Key失效机制 Redis的Key失效机制,主要借助借助EXPIRE命令: EXPIRE key 30 上面的命令即为key设置30秒的过期时间,超过这个时间,我们应该就访问不到这个值 ...

  9. 【原创】详细案例解剖——浅谈Redis缓存的常用5种方式(String,Hash,List,set,SetSorted )

    很多小伙伴没接触过Redis,以至于去学习的时候感觉云里雾里的,就有一种:教程随你出,懂了算我输的感觉. 每次听圈内人在谈论的时候总是插不上话,小编就偷偷去了解了一下,也算是初入门径. 然后就整理了一 ...

随机推荐

  1. XXX系统业务建模

    1.识别业务参与者 参与者包括管理员.填报人员.审核人员和领导.          2.识别业务用例(用例图展现) 3.详述业务用例(填报需求这一用例,以活动图详细展现如下) 4.建立业务对象模型

  2. 高级FTP服务器开发

    要求: 1. 用户加密认证 2. 多用户同时登陆 3. 每个用户有自己的家目录且只能访问自己的家目录 4. 对用户进行磁盘配额.不同用户配额可不同 5. 用户可以登陆server后,可切换目录 6. ...

  3. learning makefile manner of working

  4. .net core WebApi Interlocked配合ManualResetEventSlim实现并发同步

    由于项目有某种需求,在WebApi中,有大量的请求需要操作相同的数据,因此需要用到并发同步机制去操作共享的数据. 本次配合使用Interlocked和ManualResetEventSlim来实现并发 ...

  5. eclipse中maven本地库和远程阿里库的配置

    很久没有写博客了,最近比较闲将最近学的和遇到的问题做一个备忘 1.eclipse中maven本地库的配置 如果只是下载和安装了maven没有指定maven本地库的位置,maven的默认的本地库在c:/ ...

  6. springcloud Ribbon学习笔记一

    上篇已经介绍了如何开发eureka服务并让多个服务进行相互注册,接下来记录如何开发一个服务然后注册到eureka中并能通过ribbon成功被调用 开发一个用户服务并注册到eureka中,用户服务负责访 ...

  7. php \r\n

    代码a: 复制代码 代码如下: <?php echo'hello</br>'; echo'world!'; ?> output: helllo world! 代码b: 复制代码 ...

  8. usermod语法

    语法 usermod [-LU][-c <备注>][-d <登入目录>][-e <有效期限>][-f <缓冲天数>][-g <群组>][-G ...

  9. C# 引用类型公共变量的影响

    public int[] a =new int[2]; private void button1_Click(object sender, EventArgs e) { bing(a); } priv ...

  10. matrix_chain_order

    to calculate the min step of multiplicate some matixs package dynamic_programming; public class matr ...