tensorflow和keras混用
在tensorflow中可以调用keras,有时候让模型的建立更加简单。如下这种是官方写法:
import tensorflow as tf
from keras import backend as K
from keras.layers import Dense
from keras.objectives import categorical_crossentropy
from keras.metrics import categorical_accuracy as accuracy
from tensorflow.examples.tutorials.mnist import input_data
# create a tf session,and register with keras。
sess = tf.Session()
K.set_session(sess) # this place holder is the same with input layer in keras
img = tf.placeholder(tf.float32, shape=(None, 784))
# keras layers can be called on tensorflow tensors
x = Dense(128, activation='relu')(img)
x = Dense(128, activation='relu')(x)
preds = Dense(10, activation='softmax')(x)
# label
labels = tf.placeholder(tf.float32, shape=(None, 10))
# loss function
loss = tf.reduce_mean(categorical_crossentropy(labels, preds)) train_step = tf.train.GradientDescentOptimizer(0.5).minimize(loss) mnist_data = input_data.read_data_sets('MNIST_data', one_hot=True) # initialize all variables
init_op = tf.global_variables_initializer()
sess.run(init_op) with sess.as_default():
for i in range(1000):
batch = mnist_data.train.next_batch(50)
train_step.run(feed_dict={img:batch[0],
labels:batch[1]}) acc_value = accuracy(labels, preds)
with sess.as_default():
print(acc_value.eval(feed_dict={img:mnist_data.test.images,
labels:mnist_data.test.labels}))
上述代码中,在训练阶段直接采用了tf的方式,甚至都没有定义keras的model!官网说 最重要的一步就是这里:
K.set_session(sess)
创建一个TensorFlow会话并且注册Keras。这意味着Keras将使用我们注册的会话来初始化它在内部创建的所有变量。
keras的层和模型都充分兼容tensorflow的各种scope, 例如name scope,device scope和graph scope。
经过测试,下面这种不需要k.set_session()也是可以的。
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # build module img = tf.placeholder(tf.float32, shape=(None, 784))
labels = tf.placeholder(tf.float32, shape=(None, 10)) x = tf.keras.layers.Dense(128, activation='relu')(img)
x = tf.keras.layers.Dense(128, activation='relu')(x)
prediction = tf.keras.layers.Dense(10, activation='softmax')(x) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=prediction, labels=labels)) train_optim = tf.train.AdamOptimizer().minimize(loss)
path="/home/vv/PycharmProject/Cnnsvm/MNIST_data"
mnist_data = input_data.read_data_sets(path, one_hot=True) with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init) for _ in range(1000):
batch_x, batch_y = mnist_data.train.next_batch(50)
sess.run(train_optim, feed_dict={img: batch_x, labels: batch_y}) acc_pred = tf.keras.metrics.categorical_accuracy(labels, prediction)
pred = sess.run(acc_pred, feed_dict={labels: mnist_data.test.labels, img: mnist_data.test.images}) print('accuracy: %.3f' % (sum(pred) / len(mnist_data.test.labels)))
print(pred)
如果在下载导入mnist数据出错,可以在网站上下好,本地导入。
mnist_data = input_data.read_data_sets(path, one_hot=True)
x1 = tf.layers.conv2d(img2,64,2)
x2 = tf.keras.layers.Conv2D(img2,64,2)
x3 = tf.keras.layers.Conv2D(64,2)(img2)
x1和x3卷积效果相同
tensorflow和keras混用的更多相关文章
- 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络暨TensorFlow和Keras交互简介
零.参考资料 有关FPN的介绍见『计算机视觉』FPN特征金字塔网络. 网络构架部分代码见Mask_RCNN/mrcnn/model.py中class MaskRCNN的build方法的"in ...
- 深度学习基础系列(五)| 深入理解交叉熵函数及其在tensorflow和keras中的实现
在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地 ...
- windows安装TensorFlow和Keras遇到的问题及其解决方法
安装TensorFlow在Windows上,真是让我心力交瘁,想死的心都有了,在Windows上做开发真的让人发狂. 首先说一下我的经历,本来也就是起初,网上说python3.7不支持TensorFl ...
- Ubuntu18.04 安装TensorFlow 和 Keras
TensorFlow和Keras是当前两款主流的深度学习框架,Keras被采纳为TensorFlow的高级API,平时做深度学习任务,可以使用Keras作为深度学习框架,并用TensorFlow作为后 ...
- Anaconda 安装 tensorflow 和 keras
说明:此操作是在 Anaconda Prompt 窗口完成的 CPU版 tensorflow 的安装. 1.用 conda 创建虚拟环境 tensorflow python=3.6 conda cre ...
- 成功解决 AttributeError: module 'tensorflow.python.keras.backend' has no attribute 'get_graph'
在导入keras包时出现这个问题,是因为安装的tensorflow版本和keras版本不匹配,只需卸载keras,重新安装自己tensorflow对应的版本就OK了.可以在这个网址查看tensorfl ...
- tensorflow和keras的安装
1 卸载tensorflow方法,在终端输入: 把protobuf删除了才能卸载干净. sudo pip uninstall protobuf sudo pip uninstall tensorfl ...
- win10+anaconda安装tensorflow和keras遇到的坑小结
win10下利用anaconda安装tensorflow和keras的教程都大同小异(针对CPU版本,我的gpu是1050TI的MAX-Q,不知为啥一直没安装成功),下面简单说下步骤. 一 Anaco ...
- Anaconda安装tensorflow和keras(gpu版,超详细)
本人配置:window10+GTX 1650+tensorflow-gpu 1.14+keras-gpu 2.2.5+python 3.6,亲测可行 一.Anaconda安装 直接到清华镜像网站下载( ...
随机推荐
- .net ML机器学习中遇见错误记录
避免入坑: 1.错误提示 numClasses must be at least 2 大概是训练模型的数据分类必须是两种,如下错误: 正确数据集如下:
- Asp.net 程序连接orcle如果在安装 32 位 Oracle 客户端组件的情况下以 64 位模式运行,
本人使用orcale11g 安装orcale 之类以及navicat配置在这里不提,之后会写一篇文章来说明. 到此已经安装和配置navicat访问数据正常,但是运行Asp.net 程序报错 问题如下 ...
- 【JVM】-NO.110.JVM.1 -【GC垃圾收集器】
Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...
- 转载的web server实例
asp.net—web server模拟网上购物 2014-05-08 我来说两句 来源:asp.net—web server模拟网上购物 收藏 我要投稿 在学vb的时候学到了a ...
- hadoop执行 报错
Error: java.io.IOException: Initialization of all the collectors failed. Error in last collector was ...
- Unity之显示fps功能
如下: using UnityEngine; using System.Collections; public class ShowFpsOnGUI : MonoBehaviour { public ...
- CentOS 7 keepalived+LVS
LVS架构中 , 不管是NAT模式还是DR模式 , 当后端的RS宕机了 , 调度器还是会把请求转发到宕掉的RS上 , 然而keepalived可以解决该问题 , 它不仅仅有高可用的功能 , 还有负载均 ...
- java解答:有17个人围成一圈(编号0~16),从第0号的人开始从1报数,凡报到3的倍数的人离开圈子,然后再数下去,直到最后只剩下一个人为止,问此人原来的位置是多少号?
package ttt; import java.util.HashMap; import java.util.Map.Entry; /** * 有17个人围成一圈(编号0~16),从第0号的人开始从 ...
- property装饰器以及多态
property是一种特殊的属性 访问它时执行一段功能然后返回值 class People: def __init__(self, name): self.__name = name @propert ...
- flask 定义数据库关系(一对多)
定义关系 在关系型数据库中,我们可以通过关系让不同表之间的字段建立联系.一般来说,定义关系需要两步,分别是创建外键和定义关系属性.在更复杂的多对多关系中,我们还需要定义关联表来管理关系.下面我们学习用 ...