51nod1237 最大公约数之和 V3
题意:求
解:
最后一步转化是因为phi * I = Id,故Id * miu = phi
第二步是反演,中间省略了几步...
然后就这样A了......最终式子是个整除分块,后面用杜教筛求一下phi前缀和即可。
#include <cstdio>
#include <map> typedef long long LL;
const int N = , T = ;
const LL MO = ; int p[N], top, phi[N];
LL Phi[N], inv2;
bool vis[N];
std::map<LL, LL> mp; inline void getp(int n) {
phi[] = ;
for(int i = ; i <= n; i++) {
if(!vis[i]) {
p[++top] = i;
phi[i] = i - ;
}
for(int j = ; j <= top && i * p[j] <= n; j++) {
vis[i * p[j]] = ;
if(i % p[j] == ) {
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * (p[j] - );
}
}
for(int i = ; i <= n; i++) {
Phi[i] = (Phi[i - ] + phi[i]) % MO;
}
return;
} LL getPhi(LL x) {
if(x <= ) return ;
if(x <= T) return Phi[x];
if(mp.count(x)) return mp[x];
LL ans = (x + ) % MO * (x % MO) % MO * inv2 % MO;
for(LL i = , j; i <= x; i = j + ) {
j = x / (x / i);
ans -= (j - i + ) % MO * getPhi(x / i) % MO;
ans %= MO;
}
return mp[x] = (ans + MO) % MO;
} int main() {
LL n;
getp(T);
inv2 = (MO + ) / ;
scanf("%lld", &n);
LL ans = ;
for(LL i = , j; i <= n; i = j + ) {
j = n / (n / i);
LL temp = (n / i) % MO;
ans += temp * temp % MO * (getPhi(j) - getPhi(i - ) + MO) % MO;
ans %= MO;
}
printf("%lld\n", (ans + MO) % MO);
return ;
}
AC代码
51nod1237 最大公约数之和 V3的更多相关文章
- [51nod1237] 最大公约数之和 V3(杜教筛)
题面 传送门 题解 我好像做过这题-- \[ \begin{align} ans &=\sum_{i=1}^n\sum_{j=1}^n\gcd(i,j)\\ &=\sum_{d=1}^ ...
- [51nod1237]最大公约数之和V3
$\sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j)\\$ $=\sum_{d=1}^{n}d\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}\varepsilo ...
- 51NOD 1237 最大公约数之和 V3 [杜教筛]
1237 最大公约数之和 V3 题意:求\(\sum_{i=1}^n\sum_{j=1}^n(i,j)\) 令\(A(n)=\sum_{i=1}^n(n,i) = \sum_{d\mid n}d \c ...
- 51nod 1237 最大公约数之和 V3(杜教筛)
[题目链接] https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 [题目大意] 求[1,n][1,n]最大公约数之和 ...
- 51nod 1237 最大公约数之和 V3
求∑1<=i<=n∑1<=j<=ngcd(i,j) % P P = 10^9 + 7 2 <= n <= 10^10 这道题,明显就是杜教筛 推一下公式: 利用∑d ...
- 51nod1237 最大公约数之和
题目链接 题意 其实就是求 \[\sum\limits_{i=1}^n\sum\limits_{j=1}^ngcd(i,j)\] 思路 建议先看一下此题的一个弱化版 推一下式子 \[\sum\limi ...
- 51Nod.1237.最大公约数之和 V3(莫比乌斯反演 杜教筛 欧拉函数)
题目链接 \(Description\) \(n\leq 10^{10}\),求 \[\sum_{i=1}^n\sum_{j=1}^ngcd(i,j)\ mod\ (1e9+7)\] \(Soluti ...
- 【题解】最大公约数之和 V3 51nod 1237 杜教筛
题目传送门 http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1237 数学题真是做的又爽又痛苦,爽在于只要推出来公式基本上就 ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
随机推荐
- windows下docker启动.net core mvc随手记
docker基本命令: 查看当前的版本docker--version查看本地所有镜像:docker images查看当前正在运行的所有容器docker ps停止某个容器:docker stop 容器I ...
- 将 C# 枚举序列化为 JSON 字符串 基础理论
该转换过程需要引用 Newtonsoft.JSON,这其中的转换过程还是蛮有意思的. 一.定义枚举 /// <summary> /// 托寄物品枚举 /// </summary> ...
- Visual Studio2017 数据库架构比较
一.前言 开发的时候在测试服务器上和线网服务器上面都有我们的数据库,当我们在线网上面修改或者新增一些字段后,线网的数据库也需要更新,这个时候根据表的修改记录,然后在线网上面一个一个增加修改很浪费效率而 ...
- IIS_部署出错
在本地开发环境没问题,但是发布到服务器出现:未能写入输出文件“c:\Windows\Microsoft.NET\Framework64\v4.0.30319\Temporary ASP.NET Fil ...
- Linux实践四:ELF文件格式分析
一.分析ELF文件头 二.通过文件头找到section header table,理解内容 三.通过section header table 找到各section 四.理解常见.text .strta ...
- shell脚本--权限分配
因为shell脚本内部是很多命令的集合,这些命令也许会涉及到操作某一个文件,而且shell脚本的运行,也是需要当前用户对脚本具有运行的权限,否则,会因为权限不够而失败. 首先最重要的一点:修改权限,只 ...
- Debian中APT的前世今生
https://baike.baidu.com/item/apt-get/2360755 https://www.debian.org/doc/manuals/debian-handbook/sect ...
- XMLHttpRequest.withCredentials
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/withCredentials var xhr = new XMLHtt ...
- Docker(十三)-Docker save and load镜像保存
持久化docker的镜像或容器的方法 Docker的镜像和容器可以有两种方式来导出 docker save #ID or #Name docker export #ID or #Name docker ...
- Linux CentOS7 安装php简要过程以及nginx
Copy From https://www.cnblogs.com/freeweb/p/5425554.html 修改了下: 1. 下载php源码: wget http://cn2.php.net ...