利用Mapreduce/hive查询Phoenix数据时如何划分partition?

PhoenixInputFormat的源码一看便知:

    public List<InputSplit> getSplits(JobContext context) throws IOException, InterruptedException {
Configuration configuration = context.getConfiguration();
QueryPlan queryPlan = this.getQueryPlan(context, configuration);
List allSplits = queryPlan.getSplits();
List splits = this.generateSplits(queryPlan, allSplits);
return splits;
}

根据select查询语句创建查询计划,QueryPlan,实际是子类ScanPlan。getQueryPlan函数有一个特殊操作:

queryPlan.iterator(MapReduceParallelScanGrouper.getInstance());

如果HBase表有多个Region,则会将一个Scan划分为多个,每个Region对应一个Split。这个逻辑跟MR on HBase类似。只是这边的实现过程不同,这边调用的是Phoenix的QueryPlan,而不是HBase API。

以下是一个示例,加深这一过程的理解。

Phoenix 建表

将表presplit为4个region:[-∞,CS), [CS, EU), [EU, NA), [NA, +∞)

CREATE TABLE TEST (HOST VARCHAR NOT NULL PRIMARY KEY, DESCRIPTION VARCHAR) SPLIT ON ('CS','EU','NA');
upsert into test(host, description) values ('CS11', 'cccccccc');
upsert into test(host, description) values ('EU11', 'eeeddddddddd')
upsert into test(host, description) values ('NA11', 'nnnnneeeddddddddd');
0: jdbc:phoenix:localhost> select * from test;
+-------+--------------------+
| HOST | DESCRIPTION |
+-------+--------------------+
| CS11 | cccccccc |
| EU11 | eeeddddddddd |
| NA11 | nnnnneeeddddddddd |
+-------+--------------------+

窥探ScanPlan

import org.apache.hadoop.hbase.client.Scan;
import org.apache.log4j.BasicConfigurator;
import org.apache.phoenix.compile.QueryPlan;
import org.apache.phoenix.iterate.MapReduceParallelScanGrouper;
import org.apache.phoenix.jdbc.PhoenixStatement; import java.io.IOException;
import java.sql.*;
import java.util.List; public class LocalPhoenix {
public static void main(String[] args) throws SQLException, IOException {
BasicConfigurator.configure(); Statement stmt = null;
ResultSet rs = null; Connection con = DriverManager.getConnection("jdbc:phoenix:localhost:2181:/hbase");
stmt = con.createStatement();
PhoenixStatement pstmt = (PhoenixStatement)stmt;
QueryPlan queryPlan = pstmt.optimizeQuery("select * from TEST");
queryPlan.iterator(MapReduceParallelScanGrouper.getInstance()); Scan scan = queryPlan.getContext().getScan();
List<List<Scan>> scans = queryPlan.getScans(); for (List<Scan> sl : scans) {
System.out.println();
for (Scan s : sl) {
System.out.print(s);
}
} con.close(); }
}

4个scan如下:

{"loadColumnFamiliesOnDemand":null,"startRow":"","stopRow":"CS","batch":-1,"cacheBlocks":true,"totalColumns":1,"maxResultSize":-1,"families":{"0":["ALL"]},"caching":100,"maxVersions":1,"timeRange":[0,1523338217847]}
{"loadColumnFamiliesOnDemand":null,"startRow":"CS","stopRow":"EU","batch":-1,"cacheBlocks":true,"totalColumns":1,"maxResultSize":-1,"families":{"0":["ALL"]},"caching":100,"maxVersions":1,"timeRange":[0,1523338217847]}
{"loadColumnFamiliesOnDemand":null,"startRow":"EU","stopRow":"NA","batch":-1,"cacheBlocks":true,"totalColumns":1,"maxResultSize":-1,"families":{"0":["ALL"]},"caching":100,"maxVersions":1,"timeRange":[0,1523338217847]}
{"loadColumnFamiliesOnDemand":null,"startRow":"NA","stopRow":"","batch":-1,"cacheBlocks":true,"totalColumns":1,"maxResultSize":-1,"families":{"0":["ALL"]},"caching":100,"maxVersions":1,"timeRange":[0,1523338217847]}Disconnected from the target VM, address: '127.0.0.1:63406', transport: 'socket'

Mapreduce atop Apache Phoenix (ScanPlan 初探)的更多相关文章

  1. Apache Phoenix基本操作-1

    本篇我们将介绍phoenix的一些基本操作. 1. 如何使用Phoenix输出Hello World? 1.1 使用sqlline终端命令 sqlline.py SZB-L0023780:2181:/ ...

  2. Apache Phoenix系列 | 从入门到精通(转载)

    原文地址:https://cloud.tencent.com/developer/article/1498057 来源: 云栖社区 作者: 瑾谦 By 大数据技术与架构 文章简介:Phoenix是一个 ...

  3. [saiku] 使用 Apache Phoenix and HBase 结合 saiku 做大数据查询分析

    saiku不仅可以对传统的RDBMS里面的数据做OLAP分析,还可以对Nosql数据库如Hbase做统计分析. 本文简单介绍下一个使用saiku去查询分析hbase数据的例子. 1.phoenix和h ...

  4. Apache Phoenix JDBC 驱动和Spring JDBCTemplate的集成

    介绍:Phoenix查询引擎会将SQL查询转换为一个或多个HBase scan,并编排运行以生成标准的JDBC结果集. 直接使用HBase API.协同处理器与自己定义过滤器.对于简单查询来说,其性能 ...

  5. phoenix 报错:type org.apache.phoenix.schema.types.PhoenixArray is not supported

    今天用phoenix报如下错误: 主要原因: hbase的表中某字段类型是array,phoenix目前不支持此类型 解决方法: 复制替换phoenix包的cursor文件 # Copyright 2 ...

  6. org.apache.phoenix.exception.PhoenixIOException: SYSTEM:CATALOG

    Error: SYSTEM:CATALOG (state=08000,code=101)org.apache.phoenix.exception.PhoenixIOException: SYSTEM: ...

  7. phoenix连接hbase数据库,创建二级索引报错:Error: org.apache.phoenix.exception.PhoenixIOException: Failed after attempts=36, exceptions: Tue Mar 06 10:32:02 CST 2018, null, java.net.SocketTimeoutException: callTimeou

    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...

  8. apache phoenix 安装试用

    备注:   本次安装是在hbase docker 镜像的基础上配置的,主要是为了方便学习,而hbase搭建有觉得   有点费事,用镜像简单.   1. hbase 镜像 docker pull har ...

  9. How to use DBVisualizer to connect to Hbase using Apache Phoenix

    How to use DBVisualizer to connect to Hbase using Apache Phoenix Article DB Visualizer is a popular ...

随机推荐

  1. profile default1

    DEVPISAP01:/sapmnt/ISD/profile # more ISD_J20_SHADEVEAIAP01 SAPSYSTEMNAME = ISD SAPSYSTEM = 20 INSTA ...

  2. python调用cmd显示中文乱码及调用cmd命令

    os.system('dir') 解决方法加上 os.system('chcp 65001') ____________________________________________________ ...

  3. django-celery使用

    1.新进一个django项目 - proj/ - proj/__init__.py - proj/settings.py - proj/urls.py - manage.py 2.在该项目创建一个pr ...

  4. jq动画分析1

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  5. mysql const与eq_ref的区别

    简单地说是const是直接按主键或唯一键读取,eq_ref用于联表查询的情况,按联表的主键或唯一键联合查询. 下面的内容翻译自官方方档: const该表最多有一个匹配行, 在查询开始时读取.由于只有一 ...

  6. 保存xml报错 'UTF_8' is not a supported encoding name

    ArgumentException: 'UTF_8' is not a supported encoding name. For information on defining a custom en ...

  7. mysql 表结构

    1.登录数据库>mysql -u root -p 数据库名称 2.查询所有数据表>show tables; 3.查询表的字段信息>desc 表名称; 4.1添加表字段 alter t ...

  8. DJango 基础 (4)

    Django模板标签 知识点: 基本概念 常用标签 模板标签例子 模板继承与应用 注释标签 模板标签 标签在渲染的过程中提供任意的逻辑. 这个定义是刻意模糊的. 例如,一个标签可以输出内容,作为控制结 ...

  9. 安装64位office时,弹出提示,要求卸载32位office

    运行 regedit,进入到HKEY_CLASSES_ROOT\Installer\Products下,删除0000510开头的项或00002开头项.然后重启计算机. 参考:  https://blo ...

  10. C++中的inline用法