题目描述

维护一个长度为n的序列,一开始都是0,支持以下两种操作:
1.U k a 将序列中第k个数修改为a。
2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作。
每次询问独立,即每次询问不会对序列进行修改。

输入

第一行包含两个正整数n,m(1<=n,m<=1000000),分别表示序列长度和操作次数。
接下来m行为m个操作,其中1<=k,c<=n,0<=a<=10^9,1<=s<=10^9。

输出

包含若干行,对于每个Z询问,若可行,输出TAK,否则输出NIE。

样例输入

3 8
U 1 5
U 2 7
Z 2 6
U 3 1
Z 2 6
U 2 2
Z 2 6
Z 2 1

样例输出

NIE
TAK
NIE
TAK
  对于每次询问,设大于等于s的数有k个,那么如果剩下数的和sum>=(c-k)*s,剩下数中每次取最大的(c-k)个就一定能进行s次(证明在最后)。只要离散化一下之后用树状数组维护一下区间个数及区间和就好了。
证明:
首先大于等于s的k个数一定能取s次,设p=c-k,如果取了z次后取不了了,也就是剩下的数不足p个,因为剩下的数之和一定>=p*(s-z),那么剩下的数之中一定有大于s-z的,在取z次之前这个数就大于s了,与上面矛盾,因此只要sum>=p*s就一定能进行s次,反之因为和都小于s,就一定取不了s次。
#include<set>
#include<map>
#include<queue>
#include<cmath>
#include<stack>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
int cnt;
char s[20];
int a[1000010];
int b[1000010];
int c[1000010];
int d[1000010];
int e[1000010];
int h[1000010];
struct node
{
long long v[1000010];
void add(int x,int t)
{
for(;x<=cnt;x+=x&-x)
{
v[x]+=t;
}
}
long long query(int x)
{
long long res=0;
for(;x;x-=x&-x)
{
res+=v[x];
}
return res;
}
}b1,b2;
int find(int x)
{
int l=1,r=cnt,mid;
while(l<r)
{
mid=(l+r)>>1;
if(h[mid]<x)
{
l=mid+1;
}
else
{
r=mid;
}
}
return l;
}
int main()
{
int num;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
scanf("%s",s);
scanf("%d%d",&b[i],&c[i]);
e[i]=c[i];
if(s[0]=='U')
{
d[i]=1;
}
}
sort(e+1,e+m+1);
h[++cnt]=e[1];
for(int i=2;i<=m;i++)
{
if(e[i]!=e[i-1])
{
h[++cnt]=e[i];
}
}
for(int i=1;i<=m;i++)
{
c[i]=find(c[i]);
}
for(int i=1;i<=m;i++)
{
if(d[i])
{
if(num=a[b[i]])
{
b1.add(num,-1);
b2.add(num,-h[num]);
}
a[b[i]]=c[i];
b1.add(c[i],1);
b2.add(c[i],h[c[i]]);
}
else
{
b2.query(c[i]-1)>=(b[i]-b1.query(cnt)+b1.query(c[i]-1))*h[c[i]]?printf("TAK\n"):printf("NIE\n");
}
}
}

BZOJ4378[POI2015]Logistyka——树状数组的更多相关文章

  1. 【BZOJ4378】[POI2015]Logistyka 树状数组

    [BZOJ4378][POI2015]Logistyka Description 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这 ...

  2. BZOJ_4378_[POI2015]Logistyka_树状数组

    BZOJ_4378_[POI2015]Logistyka_树状数组 Description 维护一个长度为n的序列,一开始都是0,支持以下两种操作: 1.U k a 将序列中第k个数修改为a. 2.Z ...

  3. 【bzoj4378】[POI2015]Logistyka 离散化+树状数组

    题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作.每次 ...

  4. [POI2015]LOG(树状数组)

    今天考试考了这题,所以来贡献\([POI2015]LOG\)的第一篇题解.代码略丑,调了快三个小时才调出来\(AC\)代码. 对于这种小清新数据结构题,所以我觉得树状数组才是这道题的正确打开方式. 首 ...

  5. 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组

    [BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...

  6. 【BZOJ4384】[POI2015]Trzy wieże 树状数组

    [BZOJ4384][POI2015]Trzy wieże Description 给定一个长度为n的仅包含'B'.'C'.'S'三种字符的字符串,请找到最长的一段连续子串,使得这一段要么只有一种字符 ...

  7. 树状数组【洛谷P3586】 [POI2015]LOG

    P3586 [POI2015]LOG 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1 ...

  8. BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]

    1103: [POI2007]大都市meg Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2221  Solved: 1179[Submit][Sta ...

  9. bzoj1878--离线+树状数组

    这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...

随机推荐

  1. 现有各种SSTC电路图,欢迎补充,研究,开发

    现有各种SSTC电路图,欢迎补充,研究,开发  496464505 2016-3-1 16:01:55 现在的各种SSTC基本都是这些图   2016-3-3 19:28:23 comter2001 ...

  2. UOJ347 WC2018 通道 边分治、虚树

    传送门 毒瘤数据结构题qwq 设三棵树分别为$T1,T2,T3$ 先将$T1$边分治,具体步骤如下: ①多叉树->二叉树,具体操作是对于每一个父亲,建立与儿子个数相同的虚点,将父亲与这些虚点穿成 ...

  3. 转 edtools

     1.下载工具包:edtools.rar ,解压后放到磁盘的何意一个目录,如D:\edTools. 2.打开ED,打开“工具”-“配置用户工具”,在弹出的对象框中,在“组和工具项目”下拉框中选择一个工 ...

  4. mysql中Error : Invalid default value for 'timestamp'问题

    在执行mysql数据库时报错       timestamp给默认值出问题. 原因是:mysql的配置参数中sql_node中NO_ZERO_IN_DATE, NO_ZERO_DATE控制了times ...

  5. C#基础巩固(1)-多态+简单工厂

    多态 如果要简要的描述多态的话,我个人是这样理解的:通过继承,父类定义方法,具休的实现由子类进行. 01代码 //父类 class Person { public virtual void skill ...

  6. CYJian的水题大赛

    实在没忍住就去打比赛了然后一耗就是一天 最后Rank19还是挺好的(要不是乐多赛不然炸飞),这是唯一一套在Luogu上号称水题大赛的而实际上真的是水题大赛的比赛 好了我们开始看题 T1 八百标兵奔北坡 ...

  7. 机器学习 第五篇:分类(kNN)

    K最近邻(kNN,k-NearestNeighbor)算法是一种监督式的分类方法,但是,它并不存在单独的训练过程,在分类方法中属于惰性学习法,也就是说,当给定一个训练数据集时,惰性学习法简单地存储或稍 ...

  8. c++对象模型-对象模型

    1:简单对象模型 1>介绍:每个成员都使用一个指针指向真正的成员.所以对象 的大小很好确定,就是成员数*指针大小. 2>用途:成员函数就是使用这个模型的 3>图: 4>加上继承 ...

  9. linux-shell-引用-命令替换-命令退出状态-逻辑操作符

    命令替换:bash7步扩展的之一 嵌套  这里没什么意义 退出状态可以参与逻辑判断 表达式 算数表达式和条件表达式,逻辑表达式 查看passwd命令比,避免用户捕获输入密码的接口 这种方式就可以直接输 ...

  10. Python数据类型-7

    什么数据类型. int 1,2,3用于计算. bool:True,False,用户判断. str:存储少量数据,进行操作 'fjdsal' '二哥','`13243','fdshklj' '战三,李四 ...