BZOJ3456 城市规划 【生成函数】【FFT】
题目分析:
容易想到生成函数的构造方法。
令g(n)表示n个点的无向图个数,f(n)表示n个点的无向连通图的个数。式子是显然的。
容易发现式子是卷积的形式,写出生成函数,然后多项式求逆后多项式乘法即可。
代码:
#include<bits/stdc++.h>
using namespace std; int n; const int maxn = ;
const int mod = ;
const int gg = ; int A[maxn],B[maxn],IB[maxn],B0[maxn],F[maxn];
int fac[maxn/],ord[maxn]; int fast_pow(int now,long long pw){
if(pw == ) return ;
if(pw == ) return now;
int z = fast_pow(now,pw/);
z = (1ll*z*z)%mod;
if(pw & ) z = (1ll*z*now)%mod;
return z;
} void FFT(int *d,int len,int dr){
for(int i=;i<len;i++) if(ord[i] < i) swap(d[i],d[ord[i]]);
for(int i=;i<len;i<<=){
int wn = fast_pow(gg,(mod-)/(i<<));
if(dr == -) wn = fast_pow(wn,mod-);
for(int j=;j<len;j+=(i<<)){
int w = ;
for(int k=;k<i;k++,w=(1ll*w*wn)%mod){
int x = d[j+k],y = (1ll*w*d[j+k+i])%mod;
d[j+k] = (x+y)%mod; d[j+k+i] = (x-y)%mod;
if(d[j+k+i] < ) d[j+k+i]+=mod;
}
}
}
if(dr == -){
int iv = fast_pow(len,mod-);
for(int i=;i<len;i++) d[i] = (1ll*d[i]*iv)%mod;
}
} void GetA(){
for(int i=;i<=n;i++)
A[i] = (1ll*fast_pow(,1ll*i*(i-)/)*fast_pow(fac[i-],mod-))%mod;
} void GetB(){
for(int i=;i<=n;i++)
B[i] = (1ll*fast_pow(,1ll*i*(i-)/)*fast_pow(fac[i],mod-))%mod;
} void Inv(){
IB[] = fast_pow(B[],mod-);
int res = ;
while(res < n+) res=res<<;
for(int i=,j=;i<=res;i<<=,j++){
int bit = i*,om = j+;
for(int k=;k<i;k++) B0[k] = B[k];
for(int k=;k<bit;k++) ord[k]=(ord[k>>]>>)+((k&)<<om-);
FFT(IB,bit,);FFT(B0,bit,);
for(int k=;k<bit;k++) B0[k]=(1ll*B0[k]*((1ll*IB[k]*IB[k])%mod))%mod;
for(int k=;k<bit;k++) IB[k] = (1ll**IB[k]-B0[k]+mod)%mod;
FFT(IB,bit,-);
for(int k=i;k<*i;k++) IB[k] = ;
}
for(int i=n;i<=res;i++) IB[i] = ;
} void Multi(){
int res = ,len = ;
while(res < *n+)res = res<<,len++;
for(int i=;i<res;i++) ord[i]=(ord[i>>]>>)+((i&)<<len-);
FFT(IB,res,);FFT(A,res,);
for(int i=;i<res;i++) F[i] = (1ll*A[i]*IB[i])%mod;
FFT(F,res,-);
} void work(){fac[] = ;
for(int i=;i<=n;i++) fac[i] = (1ll*fac[i-]*i)%mod;
GetA();
GetB();
Inv();
Multi();
F[n] = (1ll*F[n]*fac[n-])%mod;
printf("%d",F[n]);
} int main(){
scanf("%d",&n);
work();
return ;
}
BZOJ3456 城市规划 【生成函数】【FFT】的更多相关文章
- [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)
城市规划 时间限制:40s 空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...
- loj6570 毛毛虫计数(生成函数FFT)
link 巨佬olinr的题解 <-- olinr很强 考虑生成函数 考虑直径上点数>=4的毛毛虫的直径,考虑直径中间那些节点以及他上面挂的那些点的EGF \(A(x)=\sum_{i\g ...
- bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况: 而不连通的情况就是那个经典 ...
- 2019.01.03 bzoj3456: 城市规划(生成函数+多项式取对)
传送门 生成函数好题. 题意:求n个点的简单(无重边无自环)无向连通图数目 思路: 对简单无向图构造生成函数f(x)=∑n2Cn2xnn!f(x)=\sum_n2^{C_n^2}\frac{x^n}{ ...
- bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...
- BZOJ3456城市规划
题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通.为了 ...
- 挑选队友 (生成函数 + FFT + 分治)
链接:https://www.nowcoder.com/acm/contest/133/D来源:牛客网 题目描述 Applese打开了m个QQ群,向群友们发出了组队的邀请.作为网红选手,Applese ...
- 【BZOJ3771】Triple 生成函数 FFT 容斥原理
题目大意 有\(n\)把斧头,不同斧头的价值都不同且都是\([0,m]\)的整数.你可以选\(1\)~\(3\)把斧头,总价值为这三把斧头的价值之和.请你对于每种可能的总价值,求出有多少种选择方案. ...
- BZOJ3456 城市规划 【多项式求ln】
题目链接 BZOJ3456 题解 真是一道经典好题,至此已经写了分治\(NTT\),多项式求逆,多项式求\(ln\)三种写法 我们发现我们要求的是大小为\(n\)无向联通图的数量 而\(n\)个点的无 ...
随机推荐
- 关于window.onload()的加载问题
今天写了个js的demo,遇到了个小问题,后来发现是自己对window.onload()的具体用处不是太清楚,现在跟大家分享一下. <head> <meta http-equiv=& ...
- ORA-14551: 无法在查询中执行 DML 操作
编写了一个oracle函数,函数体内实现一系列数据库的逻辑处理,涉及到数据的增删等操作,返回NCLOB类型. 然后通过查询方式调用函数: SELECT PKG.MY_FUN('A') FROM DUA ...
- ASP.NET的生命周期
我主要参考了这些文章 ASP.NET应用程序与页面生命周期, IIS处理Asp.net请求和 Asp.net页面生命周期 asp.net页面的生命周期 页面生命周期开始 (一)页面生命周期的主要阶段包 ...
- 各种工业以太网比较(EtherCAT,EtherNet/IP,ProfiNet,Modbus-TCP,Powerlink)
EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EterCAT名称中的CAT为ControlAutomation Technology(控制自动化技术)首字母的缩 ...
- webpackt入门1:webpack介绍&webpack安装&使用webpack打包
本篇博客不是原创,简书的zhangwang写的,原文太长,我这里只是提取了一部分. 原文地址:入门webpack,看这篇就够了 一.Webpack解决了什么问题 问题1.JavaScript这个脚本化 ...
- WD与循环 组合数学
WD与循环 LG传送门 为什么大家都是先算\(n\)个数的和等于\(m\)的情况再求前缀和? 既然已经想到了插板法,为什么不直接对\(n\)个数的和\(\le m\)的情况做呢? 基本套路没有变:考虑 ...
- windows服务中对外提供API接口
public class SendMqService { private static bool isExcute = true; private static HttpListener listen ...
- 【终结版】C#常用函数和方法集汇总
C#里面的常用的函数和方法非常重要,然而做题的时候会经常忘记这些封装好的方法,所以我总结一下 C#常用函数和方法集. [1]C#操作字符串的常用使用方法 在 C# 中,您可以使用字符数组来表示字符串, ...
- 重磅|0元学 Python运维开发,别再错过了
51reboot 运维开发又双叒叕的搞活动了,鉴于之前 51reboot 的活动反馈,每次活动结束后(或者已经结束了很长时间)还有人在问活动的事情.这一次小编先声明一下真的不想在此次活动结束后再听到类 ...
- Linux下"负载均衡+高可用"集群的考虑点 以及 高可用方案说明(Keepalive/Heartbeat)
当下Linux运维技术越来越受到企业的关注和追捧, 在某些企业, 尤其是牵涉到电子商务和电子广告类的网站,通常会要求作负载均衡和高可用的Linux集群方案.那么如何实施Llinux集群架构,才能既有效 ...