AGC 007D.Shik and Game(DP)
\(Description\)
数轴上有一个人,从\(0\)出发到\(E\),速度为\(1\)。数轴上还有\(n\)只熊,每只熊会在经过后的\(T\)时刻后产生一个金币。给定\(E,T\)以及\(n\)个熊的坐标\(p_i\),求收集完所有金币并到达\(E\)的最短时间。
\(n\leq10^5,\quad E,T\leq10^9\)。
\(Solution\)
令\(f_i\)表示当前\(1\sim i\)只熊的金币已经收集完,且现在在\(p_i\)处的最短时间。
每次一定是路过一段的熊,然后回去吃完金币再回到\(i\)。
那么有:$$f_i=\min{f_j+p_i-p_j+\max{T,\ 2(p_i-p_{j+1})}}$$
其实\(p_i-p_j\)这一部分是必走的(就是从\(0\)到\(E\)),不需要考虑,可以最后直接加个总时间\(E\)。
所以$$f_i=\min{f_j+\max{T,\ 2(p_i-p_{j+1})}}$$
尝试对这个\(\max\)分类讨论一下。
假如我们维护最接近原点且满足\(T>2(p_i-p_{j+1})\)的位置\(j\),那么方程就是\(f_i=\min\{f_j+T\}\)。
而对于不要的那些满足\(T\leq2(p_i-p_{j+1})\)的\(j\),\(f_i=\min\{f_j+2p_i-2p_{j+1}\}\),只要记录这些\(j\)的\(f_j-2p_{j+1}\)的最小值就可以了(是段前缀)。
复杂度\(O(n)\)。
//4ms 2304KB
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 1000000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=1e5+5;
int p[N];
LL f[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
int main()
{
int n=read(),E=read(),T=read();
for(int i=1; i<=n; ++i) p[i]=read();
LL mn=1e16;
for(int i=1,j=0; i<=n; ++i)
{
while(T<=2*(p[i]-p[j+1])) mn=std::min(mn,f[j]-2*p[j+1]), ++j;
if(j!=i) f[i]=std::min(f[j]+T,mn+2*p[i]);
else f[i]=mn+2*p[i];
}
printf("%lld\n",f[n]+E);
return 0;
}
AGC 007D.Shik and Game(DP)的更多相关文章
- AGC 018E.Sightseeing Plan(组合 DP)
题目链接 \(Description\) 给定三个不相交的矩形\(A(X1,Y1)-(X2,Y2),B(X3,Y3)-(X4,Y4),C(X5,Y5)-(X6,Y6)\),求 从第一个矩形中某点\(a ...
- AGC 001E.BBQ Hard(组合 DP)
题目链接 \(Description\) 给定长为\(n\)的两个数组\(a,b\),求\[\sum_{i=1}^n\sum_{j=i+1}^n\binom{a_i+a_j+b_i+b_j}{a_i+ ...
- agc007D - Shik and Game(dp 单调性)
题意 题目链接 Sol 主人公的最优决策一定是经过熊->返回到某个位置->收集经过的钻石 那么可以直接设\(f[i]\)表示收集完了前\(i\)个位置的钻石的最小时间,转移的时候枚举下最后 ...
- 洛谷 P3580 - [POI2014]ZAL-Freight(单调队列优化 dp)
洛谷题面传送门 考虑一个平凡的 DP:我们设 \(dp_i\) 表示前 \(i\) 辆车一来一回所需的最小时间. 注意到我们每次肯定会让某一段连续的火车一趟过去又一趟回来,故转移可以枚举上一段结束位置 ...
- AGC 018E.Sightseeing Plan——网格路径问题观止
原题链接 鸣谢:AGC 018E.Sightseeing Plan(组合 DP) 本蒟蒻认为,本题堪称网格路径问题观止. 因为涵盖了不少网格路径问题的处理方法和思路. 一句话题意: 给你三个矩形. 三 ...
- AtCoder Beginner Contest 122 D - We Like AGC(DP)
题目链接 思路自西瓜and大佬博客:https://www.cnblogs.com/henry-1202/p/10590327.html#_label3 数据范围小 可直接dp f[i][j][a][ ...
- AtCoder Beginner Contest 122 D - We Like AGC (DP)
D - We Like AGC Time Limit: 2 sec / Memory Limit: 1024 MB Score : 400400 points Problem Statement Yo ...
- AGC 005D.~K Perm Counting(容斥 DP 二分图)
题目链接 \(Description\) 给定\(n,k\),求 满足对于所有\(i\),\(|a_i-i|\neq k\)的排列的个数. \(2\leq n\leq 2000,\quad 1\leq ...
- AGC 016 F - Games on DAG(状压dp)
题意 给你一个有 \(n\) 个点 \(m\) 条边 DAG 图,点的标号和拓扑序一致. 现在有两个人进行博弈,有两个棋子分别在 \(1, 2\) 号点上,需要不断移动到它指向的点上. 如果当前两个点 ...
随机推荐
- Spring声明式事务@Transactional 详解,事务隔离级别和传播行为
@Transactional注解支持9个属性的设置,这里只讲解其中使用较多的三个属性:readOnly.propagation.isolation.其中propagation属性用来枚举事务的传播行为 ...
- K8s-Pod控制器
在K8s-Pod文档中我们创建的Pod是非托管的Pod,因为Pod被设计为用后就弃的对象,如果Pod正常关闭,K8s会将该Pod清除,它没有自愈的能力.Pod控制器是用来保持Pod状态的一种对象资 ...
- 在windows下Apache安装配置
安装,从官网下载,安装即可. 配置遇到一些问题: 1. the requested operation has failed 这是因为安装后的文件目录没有没有写的权限.通过安全设置安装目录的所有 ...
- fg、bg、jobs、&、nohup、ctrl+z、ctrl+c 命令
fg.bg.jobs.&.nohup.ctrl+z.ctrl+c 命令 一.& 加在一个命令的最后,可以把这个命令放到后台执行,如 watch -n 10 sh test.sh &am ...
- C# 之 向服务器上传资源
首先写客服端,winform 应用 或者 WPF 应用 模拟一个post提交: /// <summary> /// 将本地文件上传到指定的服务器(HttpWebRequest方法) /// ...
- 用groovy脚本进行每日工作的自动化【groovy】
我们可以用groovy编写日常的批处理脚本,类似windows下的bat或者unix下的shell.其具体的编写方式非常简单,比如我们想要执行一个dir的命令,只要编写一个test.groovy,其中 ...
- 【转】git shell 命令大全
http://www.cnblogs.com/bugs/p/3384339.html 常用命令 git branch 查看本地所有分支 git status 查看当前状态 git commit 提交 ...
- parted 分区命令
fdisk 是针对 MBR的分区 ,因为MBR分区空间最大不能超过2T 最多分4个主分区 , 所以parted可以修改磁盘为GPT 可以支持更大的分区,更多的分区 1 查看分区 : #part ...
- Python学习(二) —— 运算符
一:Python的编码 python2的默认编码是ascii码,而python3的默认编码是utf-8 ASCII(American Standard Code for Information Int ...
- .net core webapi 将localhost改成ip地址
用管理员身份运行vs 添加引用 using Microsoft.AspNetCore.Cors; 修改 public void Configure(IApplicationBuilder app, I ...